Pluripotent stem cells, including embryonic stem cells (ES cells) and induced pluripotent stem cells (iPSCs), have the capacity to give rise to differentiated progeny representative of all three germ layers (ectoderm, endoderm, and mesoderm). The ability to expand pluripotent cells in vitro and subject them to direct differentiation to produce specific cell types is crucial to the development of cell-based therapies to replace or restore tissue that has been damaged by disease or injury.

We offer a broad range of tools to support the iPS workflow including: iPS cell reprogramming kits; iPS cell culture media and reagents; iPS cell characterization tools; and iPS cell differentiation media.

We are proud to offer lines from the European Bank of Induced Pluripotent Stem Cells (EBiSC) to provide researchers with greater access to nearly 800 patient-derived human iPS cell lines for disease modeling. This portfolio is an extension of our partnership with Public Health England as a distributor of its European Collection of Authenticated Cell Cultures (ECACC) portfolio. We offer a complete solution for the iPSC workflow, including novel reprogramming kits, iPSC culture media, and stem cell antibodies and characterization kits.

We offer a variety of proprietary human neural stem cell lines derived from various sources including iPSC, fetal and embryonic stem cells. All NSC lines come with optimized serum-free media and reagents to ensure proper expansion. Specialty NSC media ensures appropriate differentiation, and we offer tools for downstream NSC characterization.

Human mesenchymal stem cells (MSCs) are multipotent adult stem cells that have the capacity for multi-lineage differentiation, giving rise to a variety of mesenchymal phenotypes such as osteoblasts (bone), adipocytes (fat), and chondrocytes (cartilage). Due to their capacity for self-renewal over long periods of time and the ability to differentiate into specialized cells, interest in the biology of MSC cultures has increased, particularly in their therapeutic potential for a variety of diseases. Our comprehensive collection of tools and technologies for culturing mesenchymal stem cells includes low-passage MSC lines from various tissues, optimized expansion and differentiation media, and a broad range of MSC-related antibodies and cellular dyes.

Many embryonic stem (ES) cell culture protocols rely on the use of a monolayer of primary mouse embryonic fibroblasts (MEF feeder cells). MEF cells secrete several important growth factors into the medium that help to maintain pluripotency, and they provide a cellular matrix within which ES cells can grow. EmbryoMax PMEF mouse feeder cells provide researchers with a convenient solution for ES cell culture by eliminating the need for tedious feeder cell isolation and preparation.

Transgenic and gene knockout technologies are powerful tools for studying gene function. A prevailing method for creating transgenic and knockout mice involves the introduction of genetically-modified embryonic stem cells into early-stage mouse embryos by either blastocyst injection or aggregation techniques. These methods result in the generation of chimeric offspring, and the genetic modification may then be transmitted to successive generations if the ES cells contribute to the germline.

We offer a broad range of tools and technologies to culture mouse embryonic stem cells including the gold standard ESGRO/mLif supplement, ESGRO complete and ESGRO-2i serum-free/feeder-free media. Our portfolio includes essential mouse embryo media and MEF feeder cells for the storage, transfer and expansion of mouse embryos used to create transgenic mouse models.

For over a decade, stem cell researchers have trusted their cultures with ESGRO mouse LIF supplement for maintaining the pluripotent state of their mouse ES cell lines. The gold standard for undifferentiated mouse ES cell culture, ESGRO mLIF features:

Historically, fetal bovine serum (FBS) has been the supplement of choice for in vitro mammalian cell culture including stem cells. However, due to the undefined composition of FBS, researchers have transitioned to more chemically defined serum-free and xeno-free media and supplements for stem cell research applications. Advantages of serum-free media include:

We offer ready-to-use proprietary serum-free stem cell media for a variety of stem cell types including Human ES/iPS, neural (NSC), mesenchymal (MSC) and hematopoietic (HSC) stem cells. These media are stringently quality-controlled to ensure performance and consistency.

Stemline cGMP-manufactured media and cytokines are optimized for the expansion and maturation of diverse adult stem cell types in clinical and manufacturing environments. Stemline products are

Go here to read the rest:

Stem Cells - Sigma-Aldrich

Related Post

Leave a comment

Your email address will not be published. Required fields are marked *


Refresh