Mesenchymal Stem Cells Market 2020 is Expected to Surge with XX% CAGR by 2026 | Consumer research, Market Size & Growth, Report Covering Major Key…

Mesenchymal Stem Cells Market report would come handy to understand the competitors in the market and give an insight into sales, volumes, revenues in the Mesenchymal Stem Cells Industry & will also assists in making strategic decisions. The report also helps to decide corporate product & marketing strategies. It reduces the risks involved in making decisions as well as strategies for companies and individuals interested in the Mesenchymal Stem Cells industry. Both established and new players in Mesenchymal Stem Cells industries can use the report to understand the Mesenchymal Stem Cells market.

In Global Market, the Following Companies Are Covered:

Get a Sample Copy of the Report @ https://www.360marketupdates.com/enquiry/request-sample/14848716

Analysis of the Market:

Mesenchymal Stem Cells (MSC), also termed Mesenchymal Stromal Cells, are multipotent cells that can differentiate into a variety of cell types and have the capacity for self-renewal. MSC have been shown to differentiate in vitro or in vivo into adipocytes, chondrocytes, osteoblasts, myocytes, neurons, hepatocytes, and pancreatic islet cells. Optimized PromoCell media are available to support both the growth of MSC and their differentiation into several different lineages. Recent experiments suggest that differentiation capabilities into diverse cell types vary between MSC of different origin.

In the last several years, Global market of Mesenchymal Stem Cells developed rapidly, with an average growth rate of 6.2%. In 2015, Global revenue of Mesenchymal Stem Cells is about 110 M USD.

Market Analysis and Insights: Global Mesenchymal Stem Cells Market

In 2019, the global Mesenchymal Stem Cells market size was USD 190.3 million and it is expected to reach USD 259.8 million by the end of 2026, with a CAGR of 4.5% during 2021-2026.

Global Mesenchymal Stem Cells Scope and Market Size

Mesenchymal Stem Cells market is segmented by Type, and by Application. Players, stakeholders, and other participants in the global Mesenchymal Stem Cells market will be able to gain the upper hand as they use the report as a powerful resource. The segmental analysis focuses on revenue and forecast by Type and by Application in terms of revenue and forecast for the period 2015-2026.

Segment by Type, the Mesenchymal Stem Cells market is segmented into Human MSC, Mouse MSC, Rat MSC, Other, etc.

Segment by Application, the Mesenchymal Stem Cells market is segmented into Research Institute, Hospital, Others, etc.

Regional and Country-level Analysis

The Mesenchymal Stem Cells market is analysed and market size information is provided by regions (countries).

The key regions covered in the Mesenchymal Stem Cells market report are North America, Europe, China, Japan, Southeast Asia, India and Central & South America, etc.

The report includes country-wise and region-wise market size for the period 2015-2026. It also includes market size and forecast by Type, and by Application segment in terms of revenue for the period 2015-2026.

Competitive Landscape and Mesenchymal Stem Cells Market Share Analysis

Mesenchymal Stem Cells market competitive landscape provides details and data information by vendors. The report offers comprehensive analysis and accurate statistics on revenue by the player for the period 2015-2020. It also offers detailed analysis supported by reliable statistics on revenue (global and regional level) by player for the period 2015-2020. Details included are company description, major business, company total revenue and the revenue generated in Mesenchymal Stem Cells business, the date to enter into the Mesenchymal Stem Cells market, Mesenchymal Stem Cells product introduction, recent developments, etc.

The major vendors include Lonza, Thermo Fisher, Bio-Techne, ATCC, MilliporeSigma, PromoCell GmbH, Genlantis, Celprogen, Cell Applications, Cyagen Biosciences, etc.

This report focuses on the global Mesenchymal Stem Cells status, future forecast, growth opportunity, key market and key players. The study objectives are to present the Mesenchymal Stem Cells development in North America, Europe, China, Japan, Southeast Asia, India and Central & South America.

Mesenchymal Stem Cells Market Breakdown by Types:

Mesenchymal Stem Cells Market Breakdown by Application:

Critical highlights covered in the Global Mesenchymal Stem Cells market include:

The information available in the Mesenchymal Stem Cells Market report is segmented for proper understanding. The Table of contents contains Market outline, Market characteristics, Market segmentation analysis, Market sizing, customer landscape & Regional landscape. For further improving the understand ability various exhibits (Tabular Data & Pie Charts) has also been used in the Mesenchymal Stem Cells Market report.

Get a Sample Copy of the Report @ https://www.360marketupdates.com/enquiry/request-sample/14848716

Reasons for Buy Mesenchymal Stem Cells Market Report:

In the end, Mesenchymal Stem Cells Industry report provides the main region, market conditions with the product price,profit, capacity, production, supply, demand and market growth rateand forecast etc. This report also Present newproject SWOT analysis,investment feasibility analysis, andinvestment return analysis.

Contact Us:

Name: Mr. Ajay More

Email: [emailprotected]

Organization: 360 Market Updates

Phone: +14242530807 / + 44 20 3239 8187

Micro Spectrometers Market Size in 2020 Industry Demand, Market Share, Trend, Industry News, Business Growth, Top Countries Analysis & Topmanufacturers, Top Key Players Update 2026

Active Air Sampler Market Size and Share 2020,Global Industry Analysis by Trends, Future Demands, Emerging Technologies, Top Countries Analysis & Topmanufacturers Research Forecasts To 2026

Peanuts Market 2020: Global Industry Size, Share, Future Challenges, Revenue, Demand, Industry Growth and Top Players, China, India, Nigeria Analysis to 2026

Functional Safety Design Market Size 2020 Top manufacturers Entry, Industry Outlook | In-depth Analysis Business Opportunities and Demand Forecast to 2025

See the original post:

Mesenchymal Stem Cells Market 2020 is Expected to Surge with XX% CAGR by 2026 | Consumer research, Market Size & Growth, Report Covering Major Key...

Read more
Sherrie Hewson turns 70 with second facelift after tough year left her ‘broken’ – Mirror Online

Sherrie Hewson faced up to turning 70 this week by giving herself a real lift.

The Benidorm and Corrie star, who hits the milestone birthday on Thursday, has had a second facelift to boost her confidence after a really tough year that saw her beloved brother die and left her lonely in lockdown.

Sherrie says she was completely broken after her older sibling Brett Hutchinson passed away in April and she couldnt visit him because of coronavirus restrictions.

Brett died of a brain tumour and the shock of his death has left Sherrie more determined than ever to live life to the full.

She told the Sunday Mirror: I am still not very strong, I still have moments. Whenever I hear any Motown music, which he loved, I just cry. The pain is so terrible, my heart is broken.

Now I look at my life and think, Hang on a minute, what have I got, how long have I got?

I mean, look at my brother. Two years ago he was the healthiest thing on this planet.

So none of us know whats going to happen.

In ten years time I am going to be 80, so I need to be healthy and well for my grandchildren.

I wish I had planned more when I was younger. Instead I just went steaming ahead, thinking I was going to live forever.

Brett was only a couple of years older than me, so as I go into my seventies his death has made me want to live every day to the max.

I want to do everything now everything crazy, mad and wonderful. Everything that is possible to do I want to do it now.

And that all started with her facelift.

Dubbed the love handle facelift or LHF Sherries procedure took just minutes and she went out to lunch straight afterwards.

The procedure involved removing fat from around her hips and stomach. This was then combined with her blood, to release stem cells from the fat.

The mixture, a thick serum, was then injected into layers into her face without even drawing blood. The results will last five years.

Sherrie said: The LHF was a quick treatment and its given me such a boost. I feel like its rejuvenated my skin and restored all the volume its natural looking with no cutting, and it was all done in under an hour.

I absolutely love the results.

She adds: I had a facelift when I was 50 and Ive had bits and bobs done throughout the years a bit of botox and filler. But I havent had anything done for a long time now.

But as I approached 70. I just thought, What will I do for myself at this age? I thought I would give myself a last kind of boost so I can look in the mirror and think, Youre not bad for your age.

Its to give myself a lift after all the stuff I have been through, particularly in the last 18 months.

I need to give my self-confidence and self-worth a big kick up the a**e so can I feel good about myself and hold my head up high.

The actress , who lives alone, says she found lockdown awful and even turned to drinking wine every night to get through it.

She says: It was just terrifying being alone. Thank God for the internet! I have been doing the Wonderbirds show and Ive been presenting courses on Zoom. That kept my mind busy.

I did put on weight and I am trying to be more sensible now. I started drinking, and I was drinking every night which I would never do. Then I thought, I must stop this.

So I stopped for two months and I didnt even miss it. Thats when I realised I didnt have a problem. I was just bored and lonely.

Now Sherrie is hoping to spend the next decade healthy and happy and maybe even in love.

Her Corrie character Maureen Webster had four husbands, including Reg Holdsworth, played by Ken Morley. But Sherrie says she hasnt even had a proper date since her marriage to Ken Boyd broke down in 2001, after he had an affair.

Now she hopes her facelift will give her the boost she needs to start going out with people again.

She says: Dating is harder as you get older - the older you get, the more you lack confidence. I sometimes look in the mirror and dont know who that much older woman is.

Sherrie would be more than happy with a kiss and cuddle with someone with their arms around you.

She says: I cant imagine any more what that feels like that warmth and that someone who wants to be with me. Just that alone would be enough.

Sherrie, who played flirty hotel manager Joyce Temple-Savage in ITV sitcom Benidorm, says she has had a couple of potential love interests.

One was a younger American man she met on dating site Plenty of Fish. But they came to nothing.

She says: I havent really dated since I broke up with my husband except I did go for a meal with a man and I ordered a bottle of wine. He put the cork in the bottle and said he was driving and I said, Im bloody not! and took the cork out.

We got back to my house and he tried kissing me and I just thought, No!

But passion is still on Sherries wishlist as shes still open to an unbelievable affair with the right man.

She also has dreams of launching a travel programme for older people showing that they can still do crazy, mad and wonderful things.

Because coronavirus restrictions are set to change again tomorrow, with the new Rule of Six, Sherrie wont be able to celebrate her birthday as she had hoped with a big bash. But she will spend the day with daughter Keeley and youngest grand-daughter Rosie, who turned one in May.

Reflecting on her own age, the gran-of-three says: I have been on this earth for 70 years. Doesnt that sound weird?

The thing is how the hell did I get to number seven? When I got to number six I was gobsmacked. But you know what? A lot of people dont get to number seven, so how lucky am I?

Ive got a wonderful family and Ive had a fabulous career. My family are my life blood, I breathe for them.

And Im healthy, thank God. When you moan and groan about getting older and I do, all the time I tell myself my great grandmother, grandmother and my mum all lived until their eighties and nineties. So I am on a good wicket there arent I?

Sherrie admits she sometimes envies her daughters family life.

She says: Ive been on stage since I was four and, when I look back, my whole life has been my career.

I have no regrets, except that I would have had more children, given the chance. Keeley is at home with her three and I never had the privilege to do that. I was working so much.

But instead of dwelling on the past, Sherrie is determined to look ahead from now on. She says: At 70, I am still finding out who I am and what I want to do with my life.

Fat Transfer and Stromal Vascular fraction

We are increasingly using fat along with concentrated platelet rich plasma as a natural lipo filler to add volume where there has been for fat loss and to help with skin rejuvenation.

Fat is the bodys major source of mesenchymal stem cells, which are considered multi-potent, as they have the ability to differentiate themselves into a number of different types of stem cells that are useful for regeneration, tissue repair and wound healing. PRP is used to promote cell growth and collagen production, so is extremely useful for Creping and thinning skin.

Combined they make the perfect treatment to regenerate and rejuvenate and replace lost volume due to ageing.

What is it? An all-natural alternative incision free facelift

Downtime? 0-24 hours

How long does it last? Up to five years

Where can I get it? http://www.harleystreetskinclinic.com 0207 436 4441

How much is it? FROM 3,950

Go here to see the original:

Sherrie Hewson turns 70 with second facelift after tough year left her 'broken' - Mirror Online

Read more
Exosome Therapeutic Market 2020 | Outlook, Growth By Top Companies, Regions, Types, Applications, Drivers, Trends & Forecasts By 2026 – Red &…

Increased number of exosome therapeutics market as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Increased number of exosome therapeutics market as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

To Remain Ahead Of Your Competitors, Request for a FREE Sample Here (with covid 19 Impact Analysis) @ https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&DW

Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.

Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.

Make an Enquiry before Buying @ https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&DW

Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.

Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.

The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.

The major players covered in the report are evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global. Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Read More @ https://www.databridgemarketresearch.com/reports/global-exosome-therapeutic-market?Dw

An absolute way to forecast what future holds is to comprehend the trend today!

Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market ResearchUS: +1 888 387 2818UK: +44 208 089 1725Hong Kong: +852 8192 7475Email @ Corporatesales@databridgemarketresearch.com

More here:

Exosome Therapeutic Market 2020 | Outlook, Growth By Top Companies, Regions, Types, Applications, Drivers, Trends & Forecasts By 2026 - Red &...

Read more
Reasons Industries to Thrive Post-Pandemic! Human Mesenchymal Stem Cells (hMSC) Market Report xyz Answers it Analysis by Key Companies PromoCell,…

Global Coronavirus pandemic has impacted all industries across the globe, Human Mesenchymal Stem Cells (hMSC) market being no exception. As Global economy heads towards major recession post 2009 crisis, Cognitive Market Research has published a recent study which meticulously studies impact of this crisis on Global Human Mesenchymal Stem Cells (hMSC) market and suggests possible measures to curtail them. This press release is a snapshot of research study and further information can be gathered by accessing complete report. To Contact Research Advisor Mail us @ [emailprotected] or call us on +1-312-376-8303.

The research report on global Human Mesenchymal Stem Cells (hMSC) market as well as industry is a detailed study that provides detailed information of major key players, product types & applications/end-users; historical figures, region analysis, market drivers/opportunities & restraints forecast scenarios, strategic planning, and a precise section for the effect of Covid-19 on the market. Our research analysts intensively determine the significant outlook of the global Human Mesenchymal Stem Cells (hMSC) market study with regard to primary & secondary data and they have represented it in the form of graphs, pie charts, tables & other pictorial representations for better understanding.

Umbilical Cord Matrix hMSC, Bone Marrow hMSC, Adipose Tissue hMSC, Other are some of the key types of market. All the type segments have been analyzed based on present and future trends and the market is estimated from 2020 to 2027. Based on the application segment, the global market can be classified into Medical Application, Research, Other Applications . The analysis of application segment will help to analyze the demand for market across different end-use industries.

Request Free Sample Copy of Human Mesenchymal Stem Cells (hMSC) Market Research [emailprotected] https://cognitivemarketresearch.com/medical-devicesconsumables/human-mesenchymal-stem-cells-%28hmsc%29-market-report#download_report

Amid the COVID-19 pandemic, the industry is witnessing a major change in operations.Some of the key players include PromoCell, ThermoFisher, KURABO, Lifeline Cell Technology, Merck . key players are changing their recruitment practices to comply with the social distancing norms enforced across several regions to mitigate the risk of infection. Additionally, companies are emphasizing on using advanced recruiting solutions and digital assets to avoid in-person meetings. Advanced technologies and manufacturing process are expected to play a decisive role in influencing the competitiveness of the market players.

Regional Analysis for Human Mesenchymal Stem Cells (hMSC) Market:North America (United States, Canada)Europe (Germany, Spain, France, UK, Russia, and Italy)Asia-Pacific (China, Japan, India, Australia, and South Korea)Latin America (Brazil, Mexico, etc.)The Middle East and Africa (GCC and South Africa)

Get A Free Sample of Human Mesenchymal Stem Cells (hMSC) Market Report: https://cognitivemarketresearch.com/medical-devicesconsumables/human-mesenchymal-stem-cells-%28hmsc%29-market-report#download_report

NOTE: Whole world is experiencing the impact of Covid-19 pandemic due to its increasing spread hence, the report comprises of an up to date scenario of the Human Mesenchymal Stem Cells (hMSC) market report. Research analyst team of our company is understanding & reviewing the Covid19 Impact on Market and all the necessary areas of the market that have been altered due to the change caused by Covid19 impact. Get in touch with us for more precise/in-depth information of the Human Mesenchymal Stem Cells (hMSC) market.

Any query? Enquire Here For Discount (COVID-19 Impact Analysis Updated Sample): Click Here>Download Sample Report of Human Mesenchymal Stem Cells (hMSC) Market Report 2020 (Coronavirus Impact Analysis on Human Mesenchymal Stem Cells (hMSC) Market)

At the end of May, many states began lifting lockdown restrictions and reopening in order to revive their economies, despite warnings that it was still too early. As a result, by mid-July, around 33 states were reporting higher rates of new cases compared to the previous week with only three states reporting declining rates. Due to this Covid-19 pandemic, there has been disruptions in the supply chain which have made end-use businesses realize destructive in the manufacturing and business process. During this lockdown period, the plastic packaging helps the products to have longer shelf life as the public would not be able to buy new replacements for the expired products because most of the production units are closed.

About Us:Cognitive Market Research is one of the finest and most efficient Market Research and Consulting firm. The company strives to provide research studies which include syndicate research, customized research, round the clock assistance service, monthly subscription services, and consulting services to our clients. We focus on making sure that based on our reports, our clients are enabled to make most vital business decisions in easiest and yet effective way. Hence, we are committed to delivering them outcomes from market intelligence studies which are based on relevant and fact-based research across the global market.Contact Us: +1-312-376-8303Email: nicolas.s[emailprotected]Web: https://www.cognitivemarketresearch.com/

View original post here:

Reasons Industries to Thrive Post-Pandemic! Human Mesenchymal Stem Cells (hMSC) Market Report xyz Answers it Analysis by Key Companies PromoCell,...

Read more
Combination of stem cell therapy and educational intervention can help kids with ASD – News-Medical.Net

Reviewed by Emily Henderson, B.Sc.Sep 9 2020

Results of a clinical trial released today in STEM CELLS Translational Medicine indicate that a combination of stem cell therapy and educational intervention can significantly help children with autism spectrum disorder (ASD).

Social communication, language, and daily skills improved markedly within 18 months after stem cell transplantation. Conversely, repetitive behaviors and hyperactivity decreased remarkably."

Nguyen Thanh Liem, M.D., Ph.D., study's corresponding author

Dr. Liem, director of Vinmec Research Institute of Stem Cell and Gene Technology in Hanoi, is internationally recognized for his work in applying stem cells for different neurologic conditions (including cerebral palsy due to asphyxia, cerebral palsy related to neonatal icterus, cerebral palsy due to intracranial hemorrhage in neonatal period). He and his Vinmec team collaborated with researchers at Stanford University and Keele University on the two-year study.

ASD affects more than 18 out of every 1,000 children over the age of 8, according to the U.S.-based Centers for Disease Control. It involves a complex spectrum of disorders characterized by a deficit of social communication and interaction, restricted interest and repetitive verbal and nonverbal behavior. Children with ASD also commonly experience sleep disorders, seizures and gastrointestinal difficulties. While its cause has yet to be determined, many factors -- including genetic mutations, immune dysregulation, decreased blood flow in the brain, exposure to maternal antibodies during pregnancy and weak functional connectivity across brain regions -- appear to contribute to ASD's development. Multiple approaches including behavioral therapy, occupational therapy, speech therapy and medications are required to ameliorate its symptoms.

Educational and behavioral interventions are also crucial. The evidence indicates that young children with ASD benefit from interventions that focus on improving social interaction, communication and challenging behaviors. Unfortunately, however, many children who receive those treatments remain significantly impaired. "In search of better outcomes in the management of ASD, alternative and complementary treatments are being investigated," Dr. Liem said. "As stem cell therapy has shown promise in clinical trials treating several different types of neurological conditions such as cerebral palsy, cerebral trauma, spinal cord injury, researchers have theorized that it might be useful in treating ASD, too."

In fact, one recent study using a mouse strain bred to have autistic-like symptoms showed that transplantation of mesenchymal stem cells resulted in a reduction in stereotypical behaviors, a decrease in cognitive rigidity and an improvement in social behavior. This and other animal studies that proved the safety of the therapy paved the way for subsequent trials in children.

"However," Dr. Liem said, "while broadly consistent in outcome reporting, disparities remain around cell sources, processing, dosage and delivery route. The aim of our own study, then, was to investigate the safety and clinical outcomes of high-dosage autologous bone marrow mononuclear cell (BMMNC) transplantation combined with educational intervention."

Thirty children ranging in age from 3 to 7, with a confirmed autism diagnosis and whose CARS scores (which rates the level of ASD) placed them in the "severe" category, were selected for the open-labeled, uncontrolled trial. Each received an infusion of their own stem cells via injection into the space between their fourth and fifth lumbar vertebrae; six months later, the procedure was repeated.

After the first transplantation, all patients underwent eight weeks of educational intervention based on the Early Start Denver Model, a widely adopted play-based program that fuses behavioral and developmental principles. The children were then evaluated at intervals of six, 12 and 18 months, comparing their CARS and VABS (which measures adaptive behavior) scores with those at baseline. During this period there were no signs of any major adverse side effects.

"Although all participants still belonged to the severe level at the baseline after receiving behavioral intervention with a mean duration of 3.5 years, this study showed improvements in various aspects after BMMNC transplantation combined with educational intervention," Dr. Liem said. "Positive changes in social communication, eye contact, language, behaviors and daily skills were observed and learning ability also remarkably improved, especially after 18 months. Also, the rate of children with hyperactive disorder decreased by 50 percent and the number of children who can go to school without support increased."

Positive changes also were found in evaluation measures, including severity and adaptive ability. The number of patients requiring very substantial support decreased from 28 to 18.

"We noticed that the improvements appeared to be influenced by the CARS scores at baseline," Dr. Liem said. "Patients with a CARS score ? 49 at baseline showed better improvement than those who had CARS scores > 49 points. This would imply that patients with lesser severity had better outcomes after transplantation. We also noticed that the longer the follow-up duration was, the lower the severity of ASD and the better the children's adaptive functioning."

Meanwhile, the improvement increased progressively according to the follow-up duration, implying that the treatments have a sustainable long-term effect.

"Our study demonstrates the importance of balancing basic research and scientific rigor with compassionate use in translational medicine," the study authors emphasized. "While the mode-of-action of stem cell therapy is not yet completely understood, the positive results of this trial are testament to the safety and feasibility of applying stem cells toward treating diseases that have otherwise no, or only palliative, treatment options.

"Based on a sound scientific rationale and responsible clinical conduct, we believe that more extensive, controlled clinical trials will reveal the full potential of stem cell therapy for autism spectrum disorder."

"The clinical finding showing that the cell therapy treatment safely reduced severe autism spectrum disorder characterizations in children is encouraging," said Anthony Atala, M.D., Editor-in-Chief of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. "The findings are promising and open the opportunity for the development of a translational medicine approach that could help affected children."

View post:

Combination of stem cell therapy and educational intervention can help kids with ASD - News-Medical.Net

Read more
3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration – Science Advances

INTRODUCTION

Articular cartilage is an elastic connective tissue in the joint (1). Cartilage injury is extremely common, yet cartilage has limited self-healing capacity because of its low cellularity and avascular nature. Because damage to cartilage leads to knee joint dysfunction, resulting in substantial pain and disability in the arthritic joint, cartilage or joint reconstruction remains a considerable challenge.(1). Arthritic joints in clinical practice are replaced by total joint arthroplasty using metallic and synthetic prosthesis (2, 3). Existing joint prostheses do not remodel with host joint tissue and can lead to long-term failure by aseptic loosening or infection (4), which could only be addressed by biological regeneration of the joint. Recently, using mesenchymal stem cell (MSC) transplants and then stimulating the directional differentiation into chondrocytes is becoming the method of choice for cartilage repair (5, 6). Clinical studies have shown that joint cartilage damage always extends deeply into the subchondral bone and, thus, causes osteochondral defects in the knee joint, which can alter the joints biomechanical properties and influence the long-term performance of the cartilage tissue (7), indicating the significance of simultaneous repair of whole-layer anisotropic articular cartilage in successful knee repair. As articular cartilage transitions from the superficial zone to the deep zone, the extracellular matrix (ECM) of the cartilage is characterized by increased oxygen tension and nutrient availability, lower amounts of ECM constituents such as glycosaminoglycans (GAG), and increased presence of a different phenotype of chondrocyte population with hypertrophic and ossification markers such as RUNX2 (Runt-related transcription factor 2) and type X collagen (8, 9). The gradient and anisotropic structure in ECM deposition and cell type provides excellent permeability in deep zone (vessel ingrowth) as well as desired mechanical support (10). However, developing biomimetic constructs mimicking the gradient anisotropic structure and the signaling approaches in different layers to induce zonal-dependent chondrogenic differentiation and ECM deposition is very challenging in cartilage repair. Previous studies showed that scaffolds with small pore size (100 to 200 m) could better promote chondrogenesis in osteochondral regeneration (11). However, osteogenesis and angiogenesis were inhibited in these scaffolds with small pore sizes, showing less nutrient diffusion and worse tissue integration by decreased microvessel ingrowth in these scaffolds (12). Hydrogel has been reported for cartilage regeneration in many studies (13, 14), yet it is still difficult to construct large-scale tissue structures with hydrogel owing to inadequate structural integrity, mechanical stability, and printability (12). Here, we report developing three-dimensional (3D) bioprinted dual-factor releasing and gradient-structured MSC-laden constructs ready to implant for whole-layer cartilage regeneration.

Different joint tissue constructs for joint reconstruction were fabricated using 3D bioprinting as previously reported with organ printing united system (OPUS; Novaprint) (15). To better mimic the native cartilage, we incorporated biochemical stimulus (BCS) with different growth factor releasing, and biomechanical stimulus (BMS) with small pore sizes to induce better chondrogenesis to create the dual-factor releasing and gradient-structured cartilage construct in the double stimulus (DS) group. We chose to test the combination of bone morphogenetic protein 4 (BMP4) and transforming growth factor3 (TGF3) in the cartilage construct in an established knee cartilage defect model given its potential generalizability in the regeneration of complex, inhomogeneous joint tissues. Poly(lactic-co-glycolic acid) (PLGA) (50:50 PLA/PGA) microspheres (S) were used to deliver TGF3 and BMP4 in hydrogel (Fig. 1, A and B). Briefly, poly(-caprolactone) (PCL) was molten to fabricate the physically gradient supporting structure for the scaffold, while MSC-laden hydrogel encapsulating PLGA microparticles carrying TGF3 or BMP4 in different layers was bioprinted into the microchannels between PCL fibers from different syringes (fig. S1). During plotting, the needle diameter, layer thickness, and speed for PCL printing were kept constant at 200 m, 200 m, and 180 mm/min, respectively. The fiber spacing was kept constant at 150 m (BMS group) or 750 m (BCS group) for nongradient (NG) scaffolds and varied gradually from 150 to 750 m throughout the gradient scaffolds (DS group) (fig. S1). The gradient microchannels between PCL range gradually from 150 m wide from the superficial zone of the cartilage, providing enough mechanical properties and smaller compartments favoring articular chondrocyte differentiation (11, 16), to 750 m wide in the deepest zone of the cartilage construct, maximizing diffusion of nutrients with better microvessel ingrowth and offering higher oxygen stress in the deep zone (Fig. 1B) (12). The fiber spacing was changed by 200 m every millimeter. The scaffolds were plotted in blocks of 4 4 4 mm for rabbit cartilage construct and 14 14 14 mm for human cartilage construct (Fig. 2A and movie S1).

(A) Schematic Illustration of the study design with 3D bioprinted dual-factor releasing and gradient-structured MSC-laden constructs for articular cartilage regeneration in rabbits. Schematic diagram of construction of the anisotropic cartilage scaffold and study design. (B) A computer-aided design (CAD) model was used to design the four-layer gradient PCL scaffolding structure to offer BMS for anisotropic chondrogenic differentiation and nutrient supply in deep layers (left). Gradient anisotropic cartilage scaffold was constructed by one-step 3D bioprinting gradient polymeric scaffolding structure and dual protein-releasing composite hydrogels with bioinks encapsulating BMSCs with BMP4 or TGF3 S as BCS for chondrogenesis (middle). The anisotropic cartilage construct provides structural support and sustained release of BMSCs and differentiative proteins for biomimetic regeneration of the anisotropic articular cartilage when transplanted in the animal model (right). Different components in the diagram are depicted at the bottom. HA, hyaluronic acid.

(A) Gross appearance of (a) human-scale and (b and c) rabbit-scale cartilage scaffold (b, NG with 150-m spacing; c, NG with 750-m spacing). Top view of the rabbit cartilage scaffold is also shown (d, NG with 150-m spacing; e, NG with 750-m spacing; f, gradient scaffold with 150- to 750-m spacing) atop of the SEM images (g, horizontal section; h, vertical section) taken for the 150-m NG scaffold to demonstrate the precise alignment of the PCL fibers in the printed scaffold. (B) Deconstruction of the gradient scaffold. The structure of the gradient scaffold was deconstructed into four layers. Microscopic appearance of the hydrogel-PCL composite structure in each layer demonstrated good interconnectivity and delicate, orderly aligned structure for each layer. (C and D) Good cell viability is shown respectively for superficial and deep layers after printing with live/dead assay (green, live cells; red, dead cells) (C) under a microscope and (D) under a confocal microscope. DAPI, 4,6-diamidino-2-phenylindole. (E) Cell spreading in superficial and deep layers with cytoskeleton staining. (F) Immunostaining for cartilage markers in superficial and deep layers. Expression of COL2A1 and PRG4, the lubrication markers, was significantly higher in the superficial layers with small pore size (a and b), while the chondrogenic cells in the deep layers (c and d) mostly presented with hypertrophic phenotype (COL10A1 expression). Photo credit: Ye Sun, First Affiliated Hospital of Nanjing Medical University.

Recombinant human TGF3 (rhTGF3) and rhBMP4 were microencapsulated in PLGA S (fig. S1) (17). TGF3 and BMP4 S were mixed in the cell-laden hydrogel (table S1), respectively, and printed into the microchannels between PCL fibers with different syringes (Fig. 2B and fig. S1). To chemically simulate the hypertrophic layer in native cartilage, we used PLGABMP4-encapsulated MSC-laden hydrogel in the deepest layer with a 750-m PCL fiber spacing, while PLGATGF3 was used for the other three layers of the cartilage construct. Scanning electron microscopy (SEM) images of PLGA S were taken, showing a less than 2-m diameter for most of the PLGA S. The PLGA-encapsulated MSC-laden hydrogel also showed nice printability as demonstrated (Fig. 2B and fig. S1A).

The final product of the human and rabbit cartilage construct demonstrated good interconnectivity and delicate, orderly aligned structure under the microscope, SEM, and in gross appearance for both PCL fibers and the printed hydrogel in between (Fig. 2, B to D). To validate S distribution in MSC-laden hydrogel, fluorophore-conjugated rhodamine was encapsulated into PLGA S and delivered to the hydrogel. At day 7, PLGArhodamine S showed well-proportioned distribution and minimal cell toxicity in the hydrogel printed between the PCL fibers under a confocal microscope (Fig. 2, C and D, and fig. S1B). Immunostaining for cartilage markers in the gradient scaffold was performed (Fig. 2, E and F). Resembling the native cartilage, the expression of COL2A1 (Collagen Type II Alpha 1 Chain) and PRG4 (Proteoglycan 4), the lubrication marker, was significantly higher in the superficial layers with small pore size, while the chondrogenic cells in the deep layers mostly presented with hypertrophic phenotype (COL10A1 expression) (Fig. 2F and fig. S2). Moreover, the compressive Youngs modulus of the NG-150 scaffold and the gradient scaffold were similar to that of the native cartilage and significantly higher than that of the NG-750 scaffold (fig. S3), demonstrating that smaller PCL fiber spacing plays an important role in enhancing the mechanical properties of the PCL-hydrogel composite scaffolds. In biomimetic regeneration of native articular cartilage, the gradient scaffold could provide anisotropic chondrogenesis in different layers and structural support for the newly formed cartilage tissue in compression, and allow nutrient supply and vessel ingrowth in the deep layers.

To examine the effects of BMP4, TGF3, and their S on bone marrow stromal cell (BMSC) viability and proliferation, we cultured BMSCs in the composite hydrogel for 7 days (fig. S4). Spheres showed controlled release of TGF3 first, followed by BMP4. Relatively rapid TGF3 release in the three layers with smaller PCL fiber spacing and slower release of BMP4 in the deepest layer were sustained over 60 days in vitro (fig. S5). Similar viability and proliferation rate of BMSCs were demonstrated for BMP4 and TGF3 compared with control through 7 days in the hydrogel (fig. S4, A, C, and D). Compared with empty S, S encapsulating BMP4 and TGF3 also showed minimal toxicity to BMSC viability and proliferation in the hydrogel (fig. S4, B, E, and F). Cell viability and proliferation were further examined in the printed scaffolds (Fig. 3, A to E). Scaffold fabrication with gradient structure (Fig. 3A, left) and delicate alignment of hydrogel printing (Fig. 3A, right) were separately conducted. Printed cell-laden hydrogel causes cell alignment in a longitudinal direction of the printed paths, forming a reticular network with cell interaction (Fig. 3B). The PCL pillar structure in the final construct further stabilized the 3D printed BMSC organization, inducing a compaction phenomenon of the patterns of cell alignment in the cell-laden hydrogel (Fig. 3C). Survival of BMSCs throughout the final cartilage construct with gradient structure was examined at 60 min (day 0), 1 day, 7 days, and 21 days after printing (Fig. 3, I to K). Live/dead cell assays showed 95% cell viability on day 0, which was maintained over 75% through days 3 to 21 (Fig. 3D). Cell proliferation, assessed using the alamarBlue assay system, increased over a 21-day period, similar to the proliferation of control cells encapsulated in a fibrin construct (Fig. 3E). Immunostaining of cytoskeleton showed cell spreading, both in the hydrogel and the PCL fibers throughout the four layers of the construct (Fig. 3C). At day 21, good 3D anchoring to the PCL fiber cylinder was observed for the BMSCs released from the hydrogel (Fig. 3F). These data indicate that the one-step 3D bioprinted dual-factor releasing and gradient-structurally optimized cartilage scaffold preserved cell viability during the printing process and provided a favorable microenvironment for BMSC proliferation, spreading, and condensation for differentiation into chondrocytes in vitro.

(A) Schematic of anisotropic cartilage scaffold construction with fabrication of gradient scaffolding structure (left) and large-scale printing of aligned protein-releasing BMSC-laden hydrogel (right). Scale bar, 1 mm. (B) Gross appearance of PLGA Sencapsulated BMSC-laden hydrogel under a microscope (top). Printed cell-laden hydrogel causes cell alignment in a longitudinal direction of the printed paths, forming a reticular network with cell interaction (bottom). (C) Live/dead cell assays showed 95% cell viability maintained through day 1 to 21 for all four layers with gradient spacing (4th row, 150-m spacing; 3rd row, 350-m spacing; 2nd row, 550-m spacing; 1st row, 750-m spacing). Immunostaining of cytoskeleton (rightmost column) showed cell spreading both in the hydrogel and on the PCL fibers throughout the four layers of the construct. Scale bar, 500 m. (D and E) Quantified cell viability and proliferation in the printed scaffolds. (F) Cell anchoring in the scaffolds. (a to c) At day 21, good 3D anchoring to the PCL fiber cylinder was observed for the MSC cells released from the hydrogel. (d to f) Similar cell anchoring was observed for PCL fibers in adjacent layers. (b), (c), (e), and (f) are 3D demonstration of cell anchoring in (a) and (d), respectively. Scale bars, 100 m. Photo credit: Ye Sun, First Affiliated Hospital of Nanjing Medical University.

Before in vivo application of the scaffold, we ascertained whether spatiotemporal delivery of rhTGF3 and rhBMP4 induced layer-specific BMSC differentiation into chondrocytes that present with hyaline articular and hypertrophic phenotype. Articular chondrocytes with hyaline and hypertrophic phenotype were first derived from rabbit BMSCs in vitro. Hyaline chondrocytes concurrently produced both aggrecan and type II collagens, while hypertrophic chondrocytes produced type I collagen and type X collagen. Sequential application of rhTGF3 for 2 weeks in culture, followed by rhTGF3 for another 4 weeks (TGF3 group), induced differentiation of BMSCs into chondrocytes that synthesized aggrecan and type II collagens, suggesting hyaline articular chondrocyte-like cells. BMSCs sequentially treated with rhTGF3 and rhBMP4 demonstrated significantly higher type I collagen, type X collagen, and aggrecan protein expressions than the control (Fig. 4A and fig. S6). Moreover, cells in the TGF3-induced tissue were fibroblastic, whereas those induced with BMP4 were larger and arranged in a cobblestone pattern (Fig. 4A), similar to hypertrophic chondrocytes previously generated in culture (5). Condensation of BMSCs that indicated differentiation was observed at 4 weeks (fig. S6B). Both treatments induced BMSC differentiation and yielded a cartilaginous matrix that stained positively for toluidine blue and alcian blue in condensed BMSCs, indicative of a proteoglycan-rich, cartilage-like ECM.

(A) Chondrogenic differentiation of condensed rMSCs with toluidine blue (TB) and alcian blue (AB) staining. (B) Scaffolds were transplanted subcutaneously for 12 weeks. (C) To validate the cartilage-generating capability, scaffolds were incubated and observed for 12 weeks in vitro, indicating better cartilage-generating potential for the physically gradient protein-releasing scaffold (movie S2). (D) Youngs modulus of the scaffolds compared with native cartilage after 12 weeks. Data are presented as averages SD (n = 6). *P < 0.05 between the NG-750 group and other groups; #P < 0.05 between the native cartilage group and other groups. (E) In the generated cartilage tissues, spatiotemporally released dual-factors induced zone-specific expression of PRG4, aggrecan, and collagens II and X and showed resemblance with native joint cartilage. (F) (a to c) Toluidine blue staining of the 3D printed cartilage constructs (a, top view; b, side view; c, bottom view) after culture in chondrogenic medium for 6 weeks in vitro. (d to g) Toluidine blue and (h to k) alcian blue staining was applied for each layer of the gradient scaffold. (l to p) Safranin O (SO) and (q to t) toluidine blue staining of cartilage tissue between PCL fibers (green curved line) in different layers of the 3D printed cartilage constructs after subcutaneous implantation. Photo credit: Ye Sun, First Affiliated Hospital of Nanjing Medical University.

Cartilage scaffolds incorporating rhTGF3 and rhBMP4 for spatiotemporally controlled release were also examined in different groups of scaffolds transplanted in vivo subcutaneously for 12 weeks (Fig. 4, B to F). To validate the cartilage-generating capability of the composite scaffold, the protein-carrying scaffolds were incubated and observed for 12 weeks in vitro (Fig. 4C). All scaffolds, physically gradient or NG, showed cartilage-like tissue development surrounding the scaffolds, whereas the BCS and BMS scaffolds developed 1/4 to 1/3 thickness cartilage tissue, while the DS scaffold showed almost full-thickness coverage of cartilage-like tissue around the construct (movie S2), indicating a significantly better cartilage-generating potential in vitro and a better prospect of its cartilage matrix integration in vivo for the physically gradient protein-releasing scaffold (Fig. 4C). The compressive Youngs modulus of the BMS scaffold and the DS scaffold were similar to that of the native cartilage and significantly higher than that of the BCS scaffold with large pore sizes (Fig. 4D), demonstrating that smaller PCL fiber spacing plays an important role in enhancing the mechanical properties of the PCL-hydrogel composite scaffolds. The enhanced mechanical properties are promising for biomimetic regeneration of native articular cartilage and provide structural support for the newly formed cartilage tissue.

After 12 weeks in vivo, spatiotemporally released rhTGF3 and rhBMP4 in the DS scaffold induced zone-specific expression of PRG4, aggrecan, and collagen II and X assayed with immunofluorescence, showing resemblance with native joint cartilage (Fig. 4E). Superficial zone marker PRG4, with a gradient manner throughout the four layers, was presented mainly in the superficial layer with the smallest PCL compartments (Fig. 4E, first column, 150 m 150 m). Abundant cartilaginous matrix with collagen type II and aggrecan was present in a gradient manner primarily in the superficial layers with TGF3 delivery, whereas hypertrophic marker collagen type X was primarily expressed in the deepest zone (Fig. 4E, second to fourth columns). Cartilaginous matrix was demonstrated and stained positive for toluidine blue for the scaffold (Fig. 4F, a to c). To determine the production of GAG in each layer of the gradient scaffold, we applied toluidine blue staining (Fig. 4F, d to g) and alcian blue staining (Fig. 4F, h to k). The whole gradient scaffold body stained positive (Fig. 4F, a to c), with a gradient staining intensity from the superficial layer to the deepest layer (Fig. 4F, d to k), indicating a gradient cartilaginous matrix formation resembling the native cartilage matrix. Safranin O staining and toluidine blue staining of the generated cartilage tissue sections showed the production of a cartilaginous matrix between PCL fibers in different layers of the 3D printed cartilage constructs after subcutaneous implantation in vivo (Fig. 4F, j to s). The chondrocytes in the newly formed tissue demonstrated similar morphological characteristics to those in native cartilage. A large fraction of generated chondrocytes in the TGF3-induced tissue were fibroblastic, whereas those induced with BMP4 in the deepest layers were larger and arranged in a cobblestone pattern, similar to hypertrophic chondrocytes generated in the culture plate (Fig. 4F, l to t). All cells located within typical chondrocyte lacunae, surrounded by cartilaginous matrix.

Rabbits were used as animal models to evaluate the knee repair capacity of the cartilage scaffolds. Cartilage scaffolds were constructed by one-step 3D bioprinting gradient polymeric supporting structure and different protein-releasing composite hydrogels with bioinks encapsulating BMSCs with BMP4 or TGF3, providing structural support and sustained release of BMSCs and differentiative proteins for biomimetic regeneration of the native articular cartilage (Fig. 5). As shown in Fig. 5A (first row), a full-thickness cartilage defect was created in the knee joint. The scaffold was implanted into the defect to test for cartilage tissue regeneration. Cartilage repair with the DS scaffold showed much better gross appearance at 8, 12, and 24 weeks compared with the BCS and BMS scaffolds (Fig. 5A, second to fourth rows). During the 24-week posttransplantation period, magnetic resonance imaging (MRI) was made for the operated knee joint, demonstrating significantly better resolution of subchondral edema and healing of the articular surface after 24 weeks for the DS group (Fig. 5A, fifth row). In addition, the chondroprotective effects of the scaffolds were compared (18). The gradient scaffold group showed better chondroprotective effects with a significantly higher histological grading compared with the NG groups over the 24 weeks in vivo (Fig. 5, B to E). Better repairing effects were demonstrated with gradient scaffolds compared with NG groups over 24 weeks (Fig. 5, B to E). Compared with the control group, the gradient group also showed better cartilage regeneration capabilities (fig. S7) and chondroprotection with significantly minor damage to the femoral condyle and tibial plateau (Fig. 5, D and E). Examination of intra-articular inflammatory response showed no significant difference in interleukin-1 and tumor necrosis factor level among different groups, maintaining at a relatively low level during the 24-week cartilage healing (fig. S8, A and B, and table S2). After the 24-week healing, histomorphological analysis was conducted for the generated cartilage. As shown in Fig. 5B, the DS scaffold regenerated fully hyaline-like cartilage in the defect site as evidenced by intense staining for GAGs and better cell filling in hematoxylin and eosin (H&E) staining (Fig. 5B). Type 1 and III collagens were also demonstrated in the regenerated cartilage with picrosirius red staining and compared with the native cartilage (Fig. 5B). Immunohistochemical staining of markers (PRG4 and type II and X collagens) for chondrocyte phenotype was conducted in the generated cartilage tissue sections in different groups compared with the native cartilage (fig. S8C). In the superficial zone, only the DS scaffolds showed PRG4 staining in the superficial chondrocytes in the generated cartilage tissue. Meanwhile, gradient expression of type II and X collagens, resembling the native cartilage, was also demonstrated from the superficial zone to the deep zone of the newly formed cartilage in the DS group, indicating successful construction of the anisotropic layered cartilage with different chondrocyte phenotypes and gradient ECM deposition by the 3D bioprinted dual-factor releasing and gradient-structured MSC-laden scaffold. Furthermore, neocartilage in the DS group showed more similar appearance to normal cartilage than other groups (Fig. 5B and fig. S8C). The above results indicated that the DS anisotropic scaffold had a better cartilage-repairing effect than the BCS or BMS groups and maintained better joint function after transplantation.

(A) Scaffold implantation process and gross appearance of the repair cartilage at 8, 12, and 24 weeks. MRI was made for the operated knee joint (fifth row), demonstrating significant better resolution of subchondral edema and healing of the articular surface (white arrowheads) for joint transplanted with DS scaffolds. (B to F) Chondroprotective effects of the scaffolds were compared by (B) histological scoring evaluation of the repaired cartilage tissue during in vivo implantation. (C) Mankin score and (D) ICRS (International Cartilage Repair Society) histological score of articular cartilage in the femoral condyle (FC) and tibial plateau (TP) in both groups with scaffold implantation. *P < 0.05 between the native group and other groups. #P < 0.05 between the BCS group and the DS group. Data are presented as averages SD (N = 6). (A) Histomorphological analysis of the neocartilage tissue at 24 weeks. PR, picrosirius red. The left bottom panels are higher-resolution pictures of the formed neocartilage outline in the colored square boxes. (a to e) Sections were stained with (a) H&E, (b) Safranin O, (c) TB, and (d) AB staining to indicate the presence of proteoglycans in different groups compared with native cartilage. (e) Picrosirius red was used to stain collagens I and III. The brown irregular area at the interface under the formed neocartilage was undegraded PCL material as supporting structure for the scaffolds. Photo credit: Ye Sun, First Affiliated Hospital of Nanjing Medical University.

As native articular cartilage transitions from the superficial zone to the deep zone, different phenotypes of chondrocyte population were presented with higher lubrication and GAGs (PRG4, ACAN expression) in the superficial layers and ossification (RUNX2, COL10A1 expression) in the deep layers. In the present study, we further tested the anisotropic properties of the generated cartilage and compared it with the native cartilage. In the superficial layer, immunostaining demonstrated greater PRG4 and ACAN expression in the DS group and the native cartilage compared with other two groups (Fig. 6, A to C). Meanwhile, higher expression of ossification markers (RUNX2 and COL10A1) were also observed for the group with implanted dual-factor releasing and gradient-structured scaffold (Fig. 6, D to F). These results indicate that the dual-factor releasing and gradient-structured scaffold could better restore the anisotropic properties of the native cartilage with different chondrogenic and ossification markers in specific layers. Moreover, resembling the ingrown microvessels in the deep layers of the native cartilage, the DS scaffold could better promote microvessel ingrowth compared with the group with small pore sizes, indicating better nutrient supply and tissue integration with large pore sizes in the deep zone (Fig. 6, G and H).

(A to C) In the superficial layer, immunostaining demonstrated greater PRG4 and ACAN expression in the DS group and the native cartilage compared with other two groups. (D to F) Meanwhile, higher expression of ossification markers (RUNX2 and COL10A1) were also observed for the group with implanted dual-factor releasing and gradient-structured scaffold in deep layers. (G and H) Moreover, the DS scaffold could better promote microvessel ingrowth compared with the group with small pore sizes, indicating better nutrient supply and tissue integration with large pore sizes in the deep zone. *P < 0.05 between the native group and other groups. #P < 0.05 between the DS group and other groups. BC, biochemical stimulus; BS, biomechanical stimulus. **P < 0.01; ##P < 0.01.

In conclusion, we have generated 3D bioprinted anisotropic constructs with structural integrity for joint reconstruction and articular cartilage regeneration and further tested the functional knee articular cartilage construct in a rabbit cartilage defect model with 6-month follow-up. Human-scale cartilage constructs with the structural integrity needed and that are ready for surgical implantation were created by sequentially printing protein-releasing and MSC-laden hydrogels with synthetic PCL polymer with gradient structures, a technique that could also be applied to the regeneration of the whole joint. In previous studies, relative nonuniformity was possible when hydrogel was printed alone without PCL as scaffolding support. Although hydrogel could serve as a carrier of cells and growth factors, it alone was quite not suitable for construction of complex biomimetic tissues with required mechanical properties. The combined printing with PCL scaffolding offered the uniformity for the hydrogel and the mechanical properties needed for in vivo study. In the present study, the cell-laden hydrogel allows well-proportioned distribution of MSCs and the protein-encapsulated S and thus protects cell viability and promotes its differentiation and expansion in the scaffold (17). Meanwhile, the adjacent PCL scaffolding provides adequate mechanical support and architectural integrity, offering a stable microenvironment for the 3D anchored MSC cells within the hydrogel to differentiate and form the tissue with their secreted cartilage matrix that replaces the hydrogel as it slowly degrades (15).

However, the release of the growth factors from the embedded S was not tracked in vivo after the scaffold transplantation. The intra-articular environment in vivo would definitely lead to faster disintegration of the S in the hydrogel. In this case, the PCL scaffolding would offer a much more stable microenvironment for cell and growth factor release than hydrogel alone. Lineage tracing studies have provided compelling evidence that articular chondrocytes derive from interzone cells in regions of condensing chondrogenic mesenchyme (19), similar to our observations that the MSCs, in the presence of TGF3 and BMP4, condense in the small compartments with surrounding PCL fibers as supporting structure and develop into articular chondrocytes that express genes expressed in cartilage layers. The MSC-derived articular chondrocytes were able to generate and maintain stable cartilage phenotype in vivo when transplanted into the knee defect site. The ECM composition of TGF3- or BMP4-induced cartilage tissues in the bioprinted scaffold shared many characteristics of native articular cartilage, including the gradient expression of type II collagen, superficial localization of PRG4, and abundant presence of type X collagen in the deep zone, indicative of regenerated superficial zone articular cartilage and deep zone hypertrophic cartilage in the constructs. In summary, we have generated 3D bioprinted constructs with structural integrity for joint reconstruction and articular cartilage regeneration and further tested the functional knee articular cartilage construct in a rabbit cartilage defect model with 6-month follow-up. Generating 3D bioprinted functional constructs as prosthesis for joint replacement or cartilage repair provides an opportunity to integrate the feasibility of MSC- and 3D bioprintingbased therapy for injured or degenerative joints. Evaluation will be needed to assess the function of the joint constructs in animal experiments and whether the functional cartilage phenotypes could be sustained in daily function. For translation, we envision the surgeons could incorporate surgery and 3D bioprinting by performing a mini-invasive arthroscopy procedure to replace the damaged or degenerated articular cartilage with 3D bioprinted cartilage scaffold or by performing joint replacement surgery using 3D bioprinted joint scaffolds.

BMSCs were isolated from rabbit bone marrow aspirates. Briefly, marrow aspirates (20-ml volume) were harvested and immediately transferred into plastic tubes. Isolated rMSCs were expanded in minimum essential medium containing fetal bovine serum (10%), d-glucose (4.5 mg/ml), nonessential amino acids (0.1 mM), sodium pyruvate (1 mM), Hepes buffer (100 mM), penicillin (100 Ul/ml), streptomycin (100 g/ml), and l-glutamate (0.29 mg/ml). Medium was changed twice a week, and rMSCs were used at passage 2 for the following experiments. TGF3 (10 ng/ml) was added in the medium for 2 weeks, and then TGF3 was replaced with BMP4 (50 ng/ml) in some of the cultures for another 4 weeks. Medium was also changed twice a week. Immunofluorescence staining of chondrogenic markers (Col1A1, Col2A1, Aggrecan, and Col10A1) was conducted to compare the generated chondrocyte phenotype and observed under confocal microscopy (Leica, Japan). The expression of chondrogenesis markers (SOX9, Col1A1, and Col2A1), superficial zone chondrocyte markers (ACAN, PRG4, CILP2, GDF5, and Col22A1), and deep zone chondrocyte markers(Col10A1, RUNX2, and ALP) after TGF3 or BMP4 incubation for 6 weeks was analyzed by real-time polymerase chain reaction (RT-PCR) using an ABI 7300 RT-PCR system (Applied Biosystems, USA). Six-week-old tissues generated under both conditions were stained with toluidine blue and alcian blue for proteoglycan production. The stained images were taken using a light microscope (Leica Microsystems, Germany).

Different joint tissue constructs for joint reconstruction were fabricated using 3D bioprinting with OPUS (Novaprint). 3D bioprinting cell-laden hydrogels together with biodegradable polymers was conducted for specific articular joint. The motion program and alignment of cell-laden hydrogel and PCL fibers were demonstrated in the printing process of anisotropic cartilage tissues in movie S1. Bioprinting rabbit-derived MSC-laden hydrogels together with physically and chemically gradient biodegradable polymers was conducted for knee cartilage repair using OPUS. The rMSCs suspension (a total of 1 107 cells) was loaded into the composite hydrogel (table S1). The printing chamber was kept at a constant 17C. The native cartilage structure inspired us to produce four-layer 3D structures by placing together cell-laden hydrogel and PCL (~100-m diameter for hydrogel and ~200-m diameter for PCL) to construct a composite cartilage scaffold (17). Needle sizes for the hydrogel and PCL were 100 and 200 m, respectively. Briefly, PCL was molten (~60C) to fabricate the physically gradient supporting structure for the scaffold, while MSC-laden hydrogel (~37C) encapsulating PLGA microparticles carrying TGF3 or BMP4 in different layers was bioprinted into the microchannels between PCL fibers from different syringes (movie S1). During plotting, the needle diameter, layer thickness, and speed for PCL printing were kept constant at 200 m, 200 m, and 180 mm/min, respectively, as previously reported (15). The extrusion pressure for PCL and hydrogel was 1.2 to 1.8 kPa and 0.5 to 0.8 kPa, respectively. The fiber spacing was kept constant at 150 or 750 m for NG scaffolds and varied gradually from 150 to 750 m throughout the gradient scaffolds. The gradient microchannels between PCL range gradually from 150 m wide from the superficial zone of the cartilage to 750 m wide in the deep zone of the cartilage construct. The fiber spacing was changed every millimeter. The scaffolds were plotted in blocks of 4 4 4 mm for rabbit cartilage construct and 14 14 14 mm for human cartilage construct.

rhTGF3 and rhBMP4 were microencapsulated in PLGA (50:50 PLA/PGA) S to deliver TGF3 (20 ng/ml) and BMP4 (100 ng/ml) in hydrogel as previously described (15, 17). TGF3 and BMP4 S were mixed in the cell-laden hydrogel (table S1), respectively, and printed into the microchannels between PCL fibers with different syringes. To chemically simulate the deep layer in native cartilage, PLGABMP4-encapsulated MSC-laden hydrogel was used in the deepest layer with a 750-m PCL fiber spacing, while PLGATGF3 was used for the other three layers of the cartilage construct. Generated PLGA S was shown with SEM. Printability was also shown with a test run for the PLGA-encapsulated MSC-laden hydrogel. Release kinetics of TGF3 and BMP4 from PLGA S were measured by incubating S (10 mg/ml) encapsulating TGF3 (0.1% bovine serum albumin) or BMP4 [in phosphate-buffered saline (PBS)] at 37C with mild agitation for up to 60 days. Upon centrifugation at 2500 revolutions per minute for 5 min, supernatant of the PLGA S incubation solution was collected. Released TGF3 and BMP4 concentration was measured using enzyme-linked immunosorbent assay kits following the manufacturers protocols (15). To validate S distribution in MSC-laden hydrogel, fluorophore-conjugated rhodamine was encapsulated into PLGA S and delivered to the hydrogel. At day 7, PLGA rhodamine S and cell viability (live/dead assay) in the hydrogel was observed under a confocal microscope.

To validate the cartilage-generating capability of the composite scaffold, the protein-carrying scaffolds were incubated and observed for 12 weeks in vitro. Photographs of cartilage-like tissue development surrounding the scaffolds were taken to show the cartilage-generating potential in vitro of the scaffolds. Mechanical measurements on scaffolds and native cartilage were carried out with a single-column static instrument (Instron 5843, USA) equipped with two flat compression stages and a 10-N load cell.

To see the differences within the rMSCs cultured in the different areas of the gradient scaffolds, after 6 weeks under differentiation conditions, the constructs were collected, washed three times with PBS, and cut in four portions of 1 mm in height. The images of each layer were taken using a light microscope. The viability of the BMSCs on the scaffolds were analyzed with live/dead assay and observed under confocal microscopy for 3, 7, and 21 days, while the morphology of cells was observed under confocal microscopy at end point (21 days). Briefly, The MSCs in the scaffold were fixed with 4% paraformaldehyde and treated with rhodamine phalloidin (Thermo Fisher Scientific, USA) to stain the F-actin for 1 hour and incubated with DAPI (Thermo Fisher Scientific, USA) to stain the nucleus for 5 min in turn. Cell proliferation in the constructs was assessed with alamarBlue assay kit (DAL1100; Life Technologies) according to the manufacturers instruction as previously described (12).

Biochemical studies were performed to the full and partitioned scaffolds. Toluidine blue and alcian blue staining were applied to determine the production of GAGs in each layer of the gradient scaffold. The sections for the different layers were prepared and then treated with Safranin O and toluidine blue staining to identify GAG formation in each layer. Immunofluorescence staining of chondrocyte markers (PRG4, Col2A1, aggrecan, and Col10A1) was conducted for layer-specific chondrogenesis and observed under confocal microscopy.

Different groups of scaffolds were transplanted under the dorsal skin of nude mice in vivo subcutaneously for 12 weeks. The cartilage scaffolds were retrieved after 12 weeks in vivo, and zone-specific expressions of PRG4, aggrecan, and type II and X collagens were assayed with immunofluorescence. GAG production was determined with toluidine blue and alcian blue staining.

Adult male New Zealand white rabbits weighing 3.0 to 3.5 kg were used for the study in vivo. Rabbits were randomized into three groups (two knees of each rabbit were used): NG-750 (BCS group), NG-150 scaffold (BMS group), and the gradient scaffold (DS group). After anesthesia, the knee joint of the rabbits was exposed after dislocating the patella. A cylindrical defect (4-mm diameter, 4-mm depth) on the trochlear groove of the distal femur was created using corneal trephine. Then, suited 3D bioprinted BCS, BMS, or DS scaffolds were implanted matching with the defect. Forced flexion and extension were conducted for the operated knee to confirm the localization of the implanted scaffolds in the defect. Last, the operated knee joint was closed with suture (4-0 thread), and antibiotics were given intramuscularly for prophylactic infection. After the operation, rabbits were allowed to move freely in their single cages and fed with standard food and water. Eight, 12, and 24 weeks later, rabbits were euthanized for further study. The protocol was approved by the local Institutional Animal Care and Use Committee and complied with the Guide for the Care and Use of Laboratory Animals, revised in 2010 and published by the National Academy of Sciences.

Serial sections (4 mm thick) were cut sagittally through the center of the operative site and stained with H&E, toluidine blue, Safranin O and fast green, toluidine blue, alcian blue, and picrosirius red according to standard protocols. Immunohistochemical staining of markers (PRG4, RUNX2, and collagens II and X) for chondrocyte phenotype and microvessel ingrowth (CD31 and smooth muscle actin) was conducted according to standard protocols in the generated cartilage tissue sections in different groups compared with the native cartilage. The stained images were taken, and regenerated cartilage thickness (n = 6 for each) was calculated for different bioprinted scaffolds using a light microscope. A modified method was used to evaluate the histological repair of articular cartilage defects (18).

Acknowledgments: Funding: This work was funded by the National Key R&D Program of China (nos. 2018YFB1105600 and 2018YFA0703000), the China National Natural Science Funds (nos. 51631009 and 81802122), the Chinese postdoctoral funding (no. 2019M661559), and the Funds from Shanghai Jiao Tong University for the Clinical and Translational Research Center for 3D Printing Technology. Author contributions: Y.S. and Y.Y. contributed equally to conceiving the study and designing the experiments. W.J. helped design the 3D bioprinted scaffolds. B.W. helped synthesize the growth factorencapsulated microspheres. Y.S. and Q.W. conducted the animal experiment. Y.S. and Y.Y. analyzed the data and wrote the manuscript. K.D. helped edit the manuscript and provided oversight. All authors read and approved the final manuscript. Competing interests: The authors declare that they have no competing interests. Data materials and availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Read more from the original source:

3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration - Science Advances

Read more
Stem Cell Therapy Market is Thriving Worldwide 2020 | Trends, Growth and Profit Analysis, Forecast by 2027 – The Daily Chronicle

New Jersey, United States, The Stem Cell Therapy Market report 2020 provides a detailed impression, describe the product industry scope and the market expanded insights and forecasts up to 2027. It shows market data according to industry drivers, restraints and opportunities, analyzes the market status, the industry share, size, future Trends and growth rate of the market. The Stem Cell Therapy Market report is categorized by application, end user, technology, product / service types, and other, as well as by region. In addition, the report includes the calculated expected CAGR of chitosan acetate-market derivative from the earlier records of the Stem Cell Therapy Market, and current market trends, which are organized with future developments.

Global Stem Cell Therapy Market was valued at USD 117.66 million in 2019 and is projected to reach USD 255.37 million by 2027, growing at a CAGR of 10.97% from 2020 to 2027.

1.Stem Cell Therapy Market, By Cell Source:

Adipose Tissue-Derived Mesenchymal Stem Cells Bone Marrow-Derived Mesenchymal Stem Cells Cord Blood/Embryonic Stem Cells Other Cell Sources

2.Stem Cell Therapy Market, By Therapeutic Application:

Musculoskeletal Disorders Wounds and Injuries Cardiovascular Diseases Surgeries Gastrointestinal Diseases Other Applications

3.Stem Cell Therapy Market, By Type:

Allogeneic Stem Cell Therapy Market, By Application Musculoskeletal Disorders Wounds and Injuries Surgeries Acute Graft-Versus-Host Disease (AGVHD) Other Applications Autologous Stem Cell Therapy Market, By Application Cardiovascular Diseases Wounds and Injuries Gastrointestinal Diseases Other Applications

The report provides detailed coverage of the Stem Cell Therapy Market, including structure, definitions, applications, and Industry Chain classifications. The Stem Cell Therapy Market analysis is provided for the international markets including development trends, competitive landscape analysis, investment plan, business strategy, opportunities and development status of key regions. Development policies and plans are discussed and manufacturing processes and cost structures analyzed. This report also includes information on import / export consumption, supply and demand, costs, industry share, policy, Price, Sales and gross margins.

Ask For Discount @https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24113&utm_source=TDC&utm_medium=001

Stem Cell Therapy Market forecast up to 2027, with information such as company profiles, product picture and specification, capacity production, price, cost, revenue, and contact information. Upstream raw materials and equipment as well as downstream demand analyses are also carried out. The Stem Cell Therapy Market size, development trends and marketing channels are analyzed. Finally, the feasibility of new investment projects is assessed and general research results are offered.

The Stem Cell Therapy Market was created on the basis of an in-depth market analysis with contributions from industry experts. The report covers the growth prospects in the coming years and the discussion of the main providers.

To understand how the effects of COVID-19 are addressed in this report. A sample copy of the report is available at https://www.verifiedmarketresearch.com/product/Stem-Cell-Therapy-Market/?utm_source=TDC&utm_medium=001

Verified Market Researchis a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.

Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.

Mr. Edwyne Fernandes

US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll-Free: +1 (800)-7821768

Email:[emailprotected]

Read the original here:

Stem Cell Therapy Market is Thriving Worldwide 2020 | Trends, Growth and Profit Analysis, Forecast by 2027 - The Daily Chronicle

Read more
Immunomodulatory-based therapy as a potential promising treatment strategy against severe COVID-19 patients: A systematic review – DocWire News

This article was originally published here

Int Immunopharmacol. 2020 Aug 29;88:106942. doi: 10.1016/j.intimp.2020.106942. Online ahead of print.

ABSTRACT

The global panic of the novel coronavirus disease 2019 (COVID-19) triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an urgent requirement for effective therapy. COVID-19 infection, especially in severely ill patients, is likely to be associated with immune dysregulation, prompting the development of novel treatment approaches. Therefore, this systematic review was designed to assess the available data regarding the efficacy of the immunomodulatory drugs used to manage COVID-19. A systematic literature search was carried out up to May 27, 2020, in four databases (PubMed, Scopus, Web of Science, and Embase) and also Clinicaltrials.gov. Sixty-six publications and 111 clinical trials were recognized as eligible, reporting the efficacy of the immunomodulatory agents, including corticosteroids, hydroxychloroquine, passive and cytokine-targeted therapies, mesenchymal stem cells, and blood-purification therapy, in COVID-19 patients. The data were found to be heterogeneous, and the clinical trials were yet to post any findings. Medicines were found to regulate the immune system by boosting the innate responses or suppressing the inflammatory reactions. Passive and cytokine-targeted therapies and mesenchymal stem cells were mostly safe and could regulate the disease much better. These studies underscored the significance of severity profiling in COVID-19 patients, along with appropriate timing, duration, and dosage of the therapies. Therefore, this review indicates that immunomodulatory therapies are potentially effective for COVID-19 and provides comprehensive information for clinicians to fight this outbreak. However, there is no consensus on the optimal therapy for COVID-19, reflecting that the immunomodulatory therapies still warrant further investigations.

PMID:32896750 | DOI:10.1016/j.intimp.2020.106942

Read this article:

Immunomodulatory-based therapy as a potential promising treatment strategy against severe COVID-19 patients: A systematic review - DocWire News

Read more
E-books Industry Market Projection By Key Players, Status, Growth, Revenue, SWOT Analysis Forecast 2025 – The Daily Chronicle

Market Study Report adds new report on Global E-books Industry Market analysis 2019-2024. The report focuses on global major leading industry players with information such as company profiles, end users/applications, product and specification.

The research report on E-books Industry market comprises of an in-depth analysis of the factors driving the industry growth with respect to the regional landscape and competitive arena as well as other significant parameters. It mentions the opportunities that will back the industry expansion in existing and untapped markets as well as the challenges the business space will face. The study also includes case studies inclusive of COVID-19 pandemic cases, to provide a better understanding of this industry vertical to all shareholders.

Request a sample Report of E-books Industry Market at:https://www.marketstudyreport.com/request-a-sample/2826319?utm_source=thedailychronicle&utm_medium=ADS

Key points from COVID-19 impact assessment:

Pivotal highlights from the E-books Industry market report:

Ask for Discount on E-books Industry Market Report at:https://www.marketstudyreport.com/check-for-discount/2826319?utm_source=thedailychronicle&utm_medium=ADS

Analysis of the regional landscape:

Table of Contents:

Executive Summary: It includes key trends of the E-books Industry market related to products, applications, and other crucial factors. It also provides analysis of the competitive landscape and CAGR and market size of the E-books Industry market based on production and revenue.

Production and Consumption by Region: It covers all regional markets to which the research study relates. Prices and key players in addition to production and consumption in each regional market are discussed.

Key Players: Here, the report throws light on financial ratios, pricing structure, production cost, gross profit, sales volume, revenue, and gross margin of leading and prominent companies competing in the E-books Industry market.

Market Segments: This part of the report discusses about product type and application segments of the E-books Industry market based on market share, CAGR, market size, and various other factors.

Research Methodology: This section discusses about the research methodology and approach used to prepare the report. It covers data triangulation, market breakdown, market size estimation, and research design and/or programs.

For More Details On this Report: https://www.marketstudyreport.com/reports/covid-19-outbreak-global-e-books-industry-market-report-development-trends-threats-opportunities-and-competitive-landscape-in-2020

Related Reports:

1. COVID-19 Outbreak-Global Business Document Work Process Management (Bpo) Industry Market Report-Development Trends, Threats, Opportunities and Competitive Landscape in 2020Read More: https://www.marketstudyreport.com/reports/covid-19-outbreak-global-business-document-work-process-management-bpo-industry-market-report-development-trends-threats-opportunities-and-competitive-landscape-in-2020

2. COVID-19 Outbreak-Global Customized IoT Products Industry Market Report-Development Trends, Threats, Opportunities and Competitive Landscape in 2020Read More: https://www.marketstudyreport.com/reports/covid-19-outbreak-global-customized-iot-products-industry-market-report-development-trends-threats-opportunities-and-competitive-landscape-in-2020

Read More Reports On: https://www.marketwatch.com/press-release/at-7-cagr-mesenchymal-stem-cells-market-size-growth-research-analysis-and-share-to-attain-over-us-25185-mn-by-2026new-report-2020-08-20?tesla=y

Contact Us:Corporate Sales,Market Study Report LLCPhone: 1-302-273-0910Toll Free: 1-866-764-2150 Email: [emailprotected]

Go here to read the rest:

E-books Industry Market Projection By Key Players, Status, Growth, Revenue, SWOT Analysis Forecast 2025 - The Daily Chronicle

Read more
Avalon GloboCare Announces Mesenchymal Stromal Cell Therapeutic Platform for COVID-19 and Acute Graft Versus Host Disease (aGVHD) – Yahoo Finance

FREEHOLD, N.J., Sept. 03, 2020 (GLOBE NEWSWIRE) -- Avalon GloboCare Corp. (NASDAQ: AVCO) (Avalon or The Company), a clinical-stage global developer of cell-based technologies and therapeutics, today announced the launch of its new allogeneic mesenchymal stromal cell (MSC) therapeutic platform. Avalon plans to develop the MSC platform as a potential therapy for COVID-19, the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and for bone marrow transplant related complications of acute graft versus host disease (aGVHD).

Mesenchymal stromal cells are typically isolated from the bone marrow, umbilical cord blood, fat tissue and other tissue types. MSCs possess unique qualities including anti-inflammatory and immunomodulatory activities. MSCs have multiple functions within the immune system, affecting many different immune cell types. MSCs have the ability to suppress T-cell proliferation, cytokine secretion and regulate the balance of antibody-based and cell-based immune responses. MSCs are capable of inhibiting the activation of dendritic cells and blocking the ability of dendritic cells to present antigens to other cells in the immune system. MSCs can also tone down the abnormal release of either antibodies from B-cells or cytokines from natural killer cells.

Avalons MSC therapeutic platform represents the culmination of extensive research and development that leverages the Companys scientific and clinical expertise in cellular therapy and stem cell-derived exosome (ACTEXTM) applications. Avalon believes that this allogeneic MSC platform could offer a unique and efficacious approach to treat the potentially fatal acute respiratory distress syndrome, multi-system inflammatory syndrome and cytokine storm related to severe cases of COVID-19.

Accumulating evidence has revealed that aberrant and excessive immune responses evoked by a SARS-CoV-2 virus infection are involved in lung damage and multi-organ injury seen in some patients with moderate and severe COVID-19. Also involving an excessive immune assault on multiple organs and tissues, including the gut, liver and skin, aGVHD is a medical complication that is potentially life-threatening and commonly seen in allogeneic bone marrow transplantation. There are currently noeffective therapies for the prevention and treatment of aGVHD.

The Company is currently progressing its planned pre-clinical testing for its MSC therapeutic platform for COVID-19 and aGVHD, with plans to initiate a first-in-human clinical study during the first half of 2021, assuming clearance from U.S. and/or non-U.S. regulatory agencies.

Taking advantage of our expertise in cellular therapy development, we are encouraged by the rapid progress we have made in moving our MSC technology platform towards the clinic for these two important indications, stated David Jin, M.D., Ph.D., President and Chief Executive Officer of Avalon. We look forward to providing updates on our advancements.

About Avalon GloboCare Corp.

Avalon GloboCare Corp. (NASDAQ: AVCO) is a clinical-stage, vertically integrated, leading CellTech bio-developer dedicated to advancing and empowering innovative, transformative immune effector cell therapy, exosome technology, as well as COVID-19 related diagnostics and therapeutics. Avalon also provides strategic advisory and outsourcing services to facilitate and enhance its clients' growth and development, as well as competitiveness in healthcare and CellTech industry markets. Through its subsidiary structure with unique integration of verticals from innovative R&D to automated bioproduction and accelerated clinical development, Avalon is establishing a leading role in the fields of cellular immunotherapy (including CAR-T/NK), exosome technology (ACTEX), and regenerative therapeutics. For more information about Avalon GloboCare, please visit http://www.avalon-globocare.com.

For the latest updates on Avalon GloboCare's developments, please follow our twitter at @avalongc_avco

Forward-Looking Statements

Certain statements contained in this press release may constitute "forward-looking statements." Forward-looking statements provide current expectations of future events based on certain assumptions and include any statement that does not directly relate to any historical or current fact. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors as disclosed in our filings with the Securities and Exchange Commission located at their website (http://www.sec.gov). In addition to these factors, actual future performance, outcomes, and results may differ materially because of more general factors including (without limitation) general industry and market conditions and growth rates, economic conditions, and governmental and public policy changes. The forward-looking statements included in this press release represent the Company's views as of the date of this press release and these views could change. However, while the Company may elect to update these forward-looking statements at some point in the future, the Company specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing the Company's views as of any date subsequent to the date of the press release.

Contact Information: Avalon GloboCare Corp.4400 Route 9, Suite 3100Freehold, NJ 07728PR@Avalon-GloboCare.com

Investor Relations:Crescendo Communications, LLCTel: (212) 671-1020 Ext. 304avco@crescendo-ir.com

See more here:

Avalon GloboCare Announces Mesenchymal Stromal Cell Therapeutic Platform for COVID-19 and Acute Graft Versus Host Disease (aGVHD) - Yahoo Finance

Read more