Heart tissue regeneration: a "cell-less" therapy may be the key – Emergency-Live

This study for the regeneration of the heart tissue started reporting: It is a recent piece of news, their approach, which accelerated recovery from heart attack in pigs, could address issues with safety and effectiveness that have prevented whole-cell heart therapies from reaching clinical adoption. In recent years, researchers have explored the possibility of using transplants of heart cells grown from induced pluripotent stem cells to heal cardiac tissue in the aftermath of events such as heart attacks.

However, transplanted heart cells often fail to engraft within the recipient and perish after a few days. Clinicians also remain worried that the cells that do engraft could cause severe health issues like arrythmia and even contribute to the formation of tumors in the long run. Instead of transplanting whole cells, Gao et al. tackled these issues by only administering exosomes, or tiny containers for proteins and DNA that are secreted by cells.

Specifically, they isolated exosomes from three types of human heart cells smooth muscle cells, cardiomyocytes, and endothelial cells and injected them into the hearts of pigs after heart attack. Pigs that received the exosomes recovered more heart function and showed smaller scars compared with untreated animals and improved as well as pigs that received whole cell transplants. Gao et al. say that the acellular exosomes could enable physicians to exploit the cardioprotective and reparative properties of hiPSC-derived cells while avoiding complexities associated with cell storage, transportation, and immune rejection.

Here is the original post:

Heart tissue regeneration: a "cell-less" therapy may be the key - Emergency-Live

Read more
Convergence: EMA close to finalizing guidance for advanced therapies – Regulatory Focus

The European Medicines Agency is on the verge of releasing revised guidance for advanced therapy medicinal products containing genetically modified cells, which includes chimeric antigen receptor (CAR)-T cell therapies.

The Guideline on quality, non-clinical and clinical aspects of medicinal products containing genetically modified cells was originally issued in 2012 but underwent revision and consultation from July 2018-July 2019. The revised version is expected to be adopted in October and published in November, according to Ana Hidalgo-Simon, MD, PhD, head of advanced therapies at EMA. She previewed the major changes at RAPS Convergence 2020.

There were an enormous number of comments on the document, Hidalgo-Simon said.The agency is also working on a Q&A document on principles of good manufacturing practices (GMP) for Advanced Therapy Medicinal Products (ATMP) starting material. There will likely be consultation on the document in 2021, she said. (RELATED: Regulation of advanced therapy medicinal products in the EU, Regulatory Focus, 16 July 2020.)

Major changesEMA chose to update the guidance to reflect the increase in clinical experience with these therapies, particularly chimeric antigen receptor-T (CAR-T) cells; to cover new categories of products, such as induced pluripotent stem (iPS) cells; and to allow for consideration of new tools for genetic modification of cells, such as genome editing technologies, she said.

The main quality updates are related to starting materials, the manufacturing process, and characterization and release. For example, the starting materials guidance will now include genome editing tools, while the manufacturing process includes a new section on comparability. The characterization and release portion of the guidance includes specific advice for CAR-T cells.

Additionally, the guidance calls for dose-finding studies to explore safety, toxicity, and anti-tumor activity at different dose levels, to define the threshold dose required for anti-tumor effect, and to define the recommended dose or range for Phase 2 studies. She said sponsors need to show a solid rationale for the criteria being used to find the dose.

The guidance also calls for Phase 3 confirmatory trials to follow a randomized controlled design, comparing the CAR-T cell therapy to a reference regimen, unless otherwise scientifically justified. Single-arm studies will continue to be allowed, but they will be the exception, Dr. Hidalgo-Simon said.

Be very careful with the design of the trials, she advised. The assumptions need to be really, very well backed.

When it comes to safety, the guidance calls for a 15-year follow period. While sponsors wont have all the answers at the time of submission, Hidalgo-Simon said they should have a plan that includes monitoring during the post-authorization period.

Hidalgo-Simon also advised sponsors to think beyond the approval process and consider what evidence will be needed to convince other stakeholders -- from patients to payers -- about the safety and efficacy of the therapy.

Avoiding development pitfallsRichard Dennett, PhD, the senior director of chemistry, manufacturing and controls regulatory affairs at PPD, also participated in the RAPS Convergence 2020 session on advanced therapies. He reviewed development points where companies can run into trouble with advanced therapies, particularly CAR-T cell products.Dennett recommended that product sponsors keep the end in mind when developing advanced therapies by focusing on the target product profile at the beginning of development. That profile includes the indication for which approval will be sought and the incidence of that indication; other considerations include mode of action, demographics, how much of the product needs to be produced, and market access and reimbursement considerations.

He also outlined several areas where developers should focus to create a watertight regulatory package, including sufficient product characterization, potency assay, impurities, formulation, stability, lack of sufficient development batches, and validation strategy.

Dennett urged developers to dive into the growing number of regulatory guidance documents for advanced therapies. In addition to the European guidance documents, developers should consultthe US Food and Drug Administrations Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs), which was released in January 2020. (RELATED: Advanced therapies: Trip hazards on the development pathway, Regulatory Focus, 02 August 2020)

Live and breathe the guidances that are out there, Dennett advised. They allow us to understand what expectations we need to meet.

The key to success in advancing CAR-T cell therapies is the mitigation of risk, Dennett said: The biggest risk is the one that you havent thought of.RAPS 2020 Convergence

Go here to see the original:

Convergence: EMA close to finalizing guidance for advanced therapies - Regulatory Focus

Read more
Century Therapeutics Announces Appointment of Michael C. Diem as Chief Business Officer – StreetInsider.com

As you were browsing http://www.streetinsider.com something about your browser made us think you were a bot.

If you are interested in http://www.streetinsider.com content, APIs are available. Please contact us here http://www.streetinsider.com/signup_content.php

After completing the CAPTCHA below, you will immediately regain access to http://www.streetinsider.com.

Read more:

Century Therapeutics Announces Appointment of Michael C. Diem as Chief Business Officer - StreetInsider.com

Read more
New DNA Recovery Technique Reveals Richer Picture of the Past – Lab Manager Magazine

Tyler Murchie, a PhD candidate in the Department of Anthropology and a lead author of the study.

Emil Karpinski, McMaster University

Researchers at McMaster University have developed a new technique to tease ancient DNA from soil, pulling the genomes of hundreds of animals and thousands of plantsmany of them long extinctfrom less than a gram of sediment.

The DNA extraction method, outlined in the journalQuarternary Research, allows scientists to reconstruct the most advanced picture ever of environments that existed thousands of years ago.

The researchers analyzed permafrost samples from four sites in the Yukon, each representing different points in the Pleistocene-Halocene transition, which occurred approximately 11,000 years ago.

This transition featured the extinction of a large number of animal species such as mammoths, mastodons, and ground sloths, and the new process has yielded some surprising new information about the way events unfolded, say the researchers. They suggest, for example, that the woolly mammoth survived far longer than originally believed.

In the Yukon samples, they found the genetic remnants of a vast array of animals, including mammoths, horses, bison, reindeer, and thousands of varieties of plants, all from as little as 0.2 grams of sediment.

The Klondike region in the Yukon, where the permafrost samples containing sediment DNA, were collected.

Tyler Murchie, McMaster University

The scientists determined that woolly mammoths and horses were likely still present in the Yukon's Klondike region as recently as 9,700 years ago, thousands of years later than previous research using fossilized remains had suggested.

"That a few grams of soil contains the DNA of giant extinct animals and plants from another time and place, enables a new kind of detective work to uncover our frozen past," says evolutionary geneticist Hendrik Poinar, a lead author on the paper and director of the McMaster Ancient DNA Centre. "This research allows us to maximize DNA retention and fine-tune our understanding of change through time, which includes climate events and human migration patterns, without preserved remains."

The technique resolves a longstanding problem for scientists, who must separate DNA from other substances mixed in with sediment. The process has typically required harsh treatments that actually destroyed much of the usable DNA they were looking for. But by using the new combination of extraction strategies, the McMaster researchers have demonstrated it is possible to preserve much more DNA than ever.

"All of the DNA from those animals and plants is bound up in a tiny speck of dirt," explains Tyler Murchie, a PhD candidate in the Department of Anthropology and a lead author of the study.

"Organisms are constantly shedding cells throughout their lives. Humans, for example, shed some half a billion skin cells every day. Much of this genetic material is quickly degraded, but some small fraction is safeguarded for millenia through sedimentary mineral-binding and is out there waiting for us to recover and study it. Now, we can conduct some remarkable research by recovering an immense diversity of environmental DNA from very small amounts of sediment, and in the total absence of any surviving biological tissues."

- This press release was originally published onMcMaster University's Brighter World website

Read this article:

New DNA Recovery Technique Reveals Richer Picture of the Past - Lab Manager Magazine

Read more
Study Identifies New Set of Genes That May Explain Why People with Down Syndrome Have a Higher Risk of Leukemia – DocWire News

A study which appeared in the journal Oncotarget sheds light on why people with Down syndrome are at higher risk of Leukemia. Researchers pinpointed a new set of genes overexpressed in endothelial cells of individuals with Down syndrome, thus creating an environment conducive for leukemia.

Down syndrome occurs in approximately in one in 700 babies, and individuals with the syndrome not only development physical impairments, they have a greatly augmented risk of developing leukemia. Specifically, people with Down syndrome have a 500-fold risk of developing acute megakaryoblastic leukemia (AMKL) and a 20-fold risk of being diagnosed with acute lymphoblastic leukemia (ALL).

In this study, researchers used skin samples from patients with Down syndrome to create induced pluripotent stem cells (iPSC). They subsequently differentiated the iPSC cells into that were then endothelial cells. The researchers observed that the endothelial cell genetic expression produced altered endothelial function throughout cell maturation. We found that Down syndrome, or Trisomy 21, has genome-wide implications that place these individuals at higher risk for leukemia, says co-lead author Mariana Perepitchka, BA, Research Associate at the Manne Research Institute at Lurie Childrens via a press release. We discovered an increased expression of leukemia-promoting genes and decreased expression of genes involved in reducing inflammation. These genes were not located on chromosome 21, which makes them potential therapeutic targets for leukemia even for people without Down syndrome.

Our discovery of leukemia-conducive gene expression in endothelial cells could open new avenues for cancer research, said co-lead author Yekaterina Galat, BS, Research Associate at the Manne Research Institute at Lurie Childrens.

Fortunately, advances in iPSC technology have provided us with an opportunity to study cell types, such as endothelial cells, that are not easily attainable from patients, stated senior author Vasil Galat, PhD, Director of Human iPS and Stem Cell Core at Manne Research Institute at Lurie Childrens and Research Assistant Professor of Pathology at Northwestern University Feinberg School of Medicine. If our results are confirmed, we may have new gene targets for developing novel leukemia treatments and prevention.

More here:

Study Identifies New Set of Genes That May Explain Why People with Down Syndrome Have a Higher Risk of Leukemia - DocWire News

Read more
Innovative treatments for heart failure – Open Access Government

Concerning heart failure (HF), the current COVID-19 pandemic is having a dramatic effect on the daily life of each individual, ranging from social distancing measures applied in most countries to getting severely diseased due to the virus. Cardiovascular Disease (CVD) is among the most common conditions in people that die of the infection. The burden of CVD accounts for over 60 million people in the EU alone, therefore, it is the leading cause of death in the world.

Although COVID-19 shows us the direct impact of a potential treatment for peoples health, CVD is a stealthy pandemic killer. HF is a chronic disease condition in which the heart is not able to fill properly or efficiently pump blood throughout your body, caused by different stress conditions including myocardial infarction, atherosclerosis, diabetes and high blood pressure. Several measures are commonly used to treat heart disease, such as lifestyle changes and medications like beta-blockers and ACE inhibitors, yet these typically only slow down the progression of the disease.

Biomedical research is exploring new avenues by combining scientific insights with new technologies to overcome chronic diseases like HF. Among the most appealing and promising technologies are the use of cardiac tissue engineering and extracellular vesicles-mediated repair strategies.

Upon an initial cell loss post-infarction, it is appealing to replace this massive loss in contractile cells for new cells and thereby not treating patients symptoms, but repairing the cause of the disease. Cardiac cell therapy has been pursued for many years with variable results in small initial trials upon injection into patients. Different cell types have been used to help the myocardium in need, but the most promising approaches aim to use induced pluripotent cells (iPS) from reprogrammed cells from the patient themselves that can be directed towards contractile myocardial cells. These cells in combination with natural materials, in which the cells are embedded in the heart, can be used for tissue engineering strategies (1). Together with different international partners, Sluijters team are trying to develop strategies to use these iPS-derived contractile cells for myocardial repair via direct myocardial injection (H2020-Technobeat-66724) or to make a scaffold that can be used as a personalised biological ventricular assist device (H2020-BRAV-874827). A combination of engineering and biology to mimic the native myocardium aims to replace the chronically ill tissue for healthy and well-coupled heart tissue that can enhance the contractile performance of the heart.

Recently, a Dutch national programme started, called RegMedXB, in which the reparative treatment of the heart is aimed to be performed outside the patients body. During the time the heart is outside the body; the patient is connected to the heart-lung machine, and after restoring function, it will be re-implanted. The so-called Cardiovascular Moonshot aims to create a therapy that best suits the individual patient, by having their heart beating in a bioreactor, outside the body. Although it sounds very futuristic, many small lessons will be learned to feet novel therapeutic insights.

The initial injection of stem cells did result in a nice improvement of myocardial performance. We have now learned that rather than these delivered cells helping the heart themselves, the release of small lipid carriers called extracellular vesicles (EVs) (2) from these cells occur. These EVs carry different biological molecules, including nucleotides, proteins and lipids, and are considered to be the bodies nanosized messengers for communication. The use of stem cell-derived EVs are now being explored as a powerful means to change the course of the disease. Via these small messengers, natural biologics are delivered to diseased cells and thereby help them to overcome the stressful circumstances. EVs carry reparative signals that can be transferred to the diseased heart and thereby change the course of heart disease in some patients.

Within the EVICARE program (3) (H2020-ERC-725229), Sluijters team are using stem cell-derived EVs to change the response of the heart to injury. Also, to understand which heart cells and processes are being affected, they use materials to facilitate a slow release of biomaterials over an extended period rather than a single dose, which is probably essential for a chronic disease like HF. For now, improved blood flow is the main aim but the team have seen other effects as well, such as cardiovascular cell proliferation (4) by which the heart cells themselves start to repair the organ.

The use of EVs basically aims to enhance the endogenous repair mechanisms of the heart. These natural carriers can be mimicked with synthetic materials, or used as a hybrid of the two, thereby creating an engineered nanoparticle, that is superior in the intracellular delivery of genetic materials. The possibility of loading different biological materials allows a further tuning of its effectiveness and use in different disease conditions, creating a new off-the-shelf delivery system for nanomedicine to treat cancer and CVD (H2020-Expert-825828).

As is true of the current COVID-19 pandemic, HF is also a growing chronic disease that affects millions of people worldwide. The chronic damaged myocardium needs reparative strategies in the future to lower the social burden for patients, but also to keep the economic consequences affordable. New scientific insights with cutting edge technological developments will help to address these needs of CVD patients and their families.

References

(1) Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasch P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res. 2019 Mar 1;115(3):488-500.

(2) Sluijter JPG, Davidson SM, Boulanger, CM, Buzs EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, Madonna R, Perrino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferdinandy P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018 Jan 1;114(1):19-34.

(3) https://www.sluijterlab.com/extracellular-vesicle-inspired-ther

(4) Maring JA, Lodder K, Mol E, Verhage V, Wiesmeijer KC, Dingenouts CKE, Moerkamp AT, Deddens JC, Vader P, Smits, AM, Sluijter JPG, Goumans MJ. Cardiac Progenitor Cell-Derived Extracellular Vesicles Reduce Infarct Size and Associate with Increased Cardiovascular Cell Proliferation. J Cardiovasc Transl Res. 2019 Feb;12(1):5-17.

Please note: this is a commercial profile.

Editor's Recommended Articles

Read the original post:

Innovative treatments for heart failure - Open Access Government

Read more
Study: The Speed Neurons Fire Impacts Their Ability to Synchronize – Lab Manager Magazine

Research conducted by the Computational Neuroscience Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) has shown for the first time that a computer model can replicate and explain a unique property displayed by a crucial brain cell. Their findings, published Sept. 8 ineLife, shed light on how groups of neurons can self-organize by synchronizing when they fire fast.

The model focuses on Purkinje neurons, which are found within the cerebellum. This dense region of the hindbrain receives inputs from the body and other areas of the brain in order to fine-tune the accuracy and timing of movement, among other tasks.

"Purkinje cells are an attractive target for computational modeling as there has always been a lot of experimental data to draw from," said professor Erik De Schutter, who leads the Computation Neuroscience Unit. "But a few years ago, experimental research into these neurons uncovered a strange behavior that couldn't be replicated in any existing models."

These studies showed that the firing rate of a Purkinje neuron affected how it reacted to signals fired from other neighboring neurons.

Cell membranes have a voltage across them due to the uneven distribution of charged particles, called ions, between the inside and outside of the cell. Neurons can shuttle ions across their membrane through channels and pumps, which changes the voltage of the membrane. Fast firing Purkinje neurons have a higher membrane voltage than slow firing neurons.

Image modified from "How neurons communicate: Figure 2," by OpenStax College, Biology (CC BY 4.0)

The rate at which a neuron fires electrical signals is one of the most crucial means of transmitting information to other neurons. Spikes, or action potentials, follow an "all or nothing" principleeither they occur, or they don'tbut the size of the electrical signal never changes, only the frequency. The stronger the input to a neuron, the quicker that neuron fires.

But neurons don't fire in an independent manner. "Neurons are connected and entangled with many other neurons that are also transmitting electrical signals. These spikes can perturb neighboring neurons through synaptic connections and alter their firing pattern," explained De Schutter.

Interestingly, when a Purkinje cell fires slowly, spikes from connected cells have little effect on the neuron's spiking. But, when the firing rate is high, the impact of input spikes grows and makes the Purkinje cell fire earlier.

"The existing models could not replicate this behavior and therefore could not explain why this happened. Although the models were good at mimicking spikes, they lacked data about how the neurons acted in the intervals between spikes," De Schutter said. "It was clear that a newer model including more data was needed."

Fortunately, De Schutter's unit had just finished developing an updated model, an immense task primarily undertaken by now former postdoctoral researcher, Dr. Yunliang Zang.

Once completed, the team found that for the first time, the new model was able to replicate the unique firing-rate dependent behavior.

In the model, they saw that in the interval between spikes, the Purkinje neuron's membrane voltage in slowly firing neurons was much lower than the rapidly firing ones.

"In order to trigger a new spike, the membrane voltage has to be high enough to reach a threshold. When the neurons fire at a high rate, their higher membrane voltage makes it easier for perturbing inputs, which slightly increase the membrane voltage, to cross this threshold and cause a new spike," explained De Schutter.

The researchers found that these differences in the membrane voltage between fast and slow firing neurons were because of the specific types of potassium ion channels in Purkinje neurons.

"The previous models were developed with only the generic types of potassium channels that we knew about. But the new model is much more detailed and complex, including data about many Purkinje cell-specific types of potassium channels. So that's why this unique behavior could finally be replicated and understood," said De Schutter.

When a group of Purkinje neurons fire rapidly, loose synchronization occurs. This can be seen by the spikes occurring in groups at regular intervals (highlighted in yellow). When Purkinje neurons fire slowly, this synchronization does not occur.

OIST

The researchers then decided to use their model to explore the effects of this behavior on a larger-scale, across a network of Purkinje neurons. They found that at high firing rates, the neurons started to loosely synchronize and fire together at the same time. Then when the firing rate slowed down, this coordination was quickly lost.

Using a simpler, mathematical model, Dr. Sungho Hong, a group leader in the unit, then confirmed this link was due to the difference in how fast and slow firing Purkinje neurons responded to spikes from connected neurons.

"This makes intuitive sense," said De Schutter. He explained that for neurons to be able to sync up, they need to be able to adapt their firing rate in response to inputs to the cerebellum. "So this syncing with other spikes only occurs when Purkinje neurons are firing rapidly," he added.

The role of synchrony is still controversial in neuroscience, with its exact function remaining poorly understood. But many researchers believe that synchronization of neural activity plays a role in cognitive processes, allowing communication between distant regions of the brain. For Purkinje neurons, they allow strong and timely signals to be sent out, which experimental studies have suggested could be important for initiating movement.

"This is the first time that research has explored whether the rate at which neurons fire affects their ability to synchronize and explains how these assemblies of synchronized neurons quickly appear and disappear," said De Schutter. "We may find that other circuits in the brain also rely on this rate-dependent mechanism."

The team now plans to continue using the model to probe deeper into how these brain cells function, both individually and as a network. And, as technology develops and computing power strengthens, De Schutter has an ultimate life ambition.

"My goal is to build the most complex and realistic model of a neuron possible," said De Schutter. "OIST has the resources and computing power to do that, to carry out really fun science that pushes the boundary of what's possible. Only by delving into deeper and deeper detail in neurons, can we really start to better understand what's going on."

- This press release was originally published on theOIST website

See the original post here:

Study: The Speed Neurons Fire Impacts Their Ability to Synchronize - Lab Manager Magazine

Read more
Metrion Biosciences Strengthens Global Business Development Team – Business Wire

CAMBRIDGE, England--(BUSINESS WIRE)--Metrion Biosciences Limited (Metrion), the specialist ion channel CRO and drug discovery company, today announced it has significantly enhanced its global business development capabilities, with additional resources now committed to support key regions in the USA, Europe and Japan.

Anca Haralambie has been appointed as Business Development Executive, representing Metrion in the UK and across Europe. Anca has broad experience of supporting clients in the global drug discovery sector, with particular expertise in translational research and induced pluripotent stem cells (iPSC).

Mari Kennedy will be supporting Metrion in the mid-west and east coast USA. Mari is an experienced ion channel sales and marketing executive, and joins Metrions west coast representatives Candidate Biopharma Advisors, to support the Companys USA client base.

In Japan, Metrion will be represented by On Target Drug Discovery Service and Supply, Ltd. (On Target), based in Tokyo. On Target specialises in the sales and marketing of pre-clinical drug discovery services and related products from provider partners located outside of Japan, and will be working to support and expand upon Metrions customer base in the region.

Dr Andrew Southan, CEO, Metrion Biosciences, said: Metrion has adopted an ambitious business plan to capitalise upon our unique position in the ion channel contract research arena. By strengthening our business development team we aim to raise further awareness of our capabilities in key territories and expand our portfolio of clients seeking to outsource high quality ion channel drug discovery and safety profiling services.

Dr. Keiichi Yokoyama, founder and Managing Director, On Target, said: "On Target is pleased to support the expansion of Metrion's leading services portfolio within the Japan drug discovery community. We are fully committed to helping Metrion achieve its business goals in our territory by leveraging the Companys scientific expertise with On-Target's market-specific experience and technical sales capability.

ENDS

Follow this link:

Metrion Biosciences Strengthens Global Business Development Team - Business Wire

Read more
Stem Cell-Derived Cells Market Forecast to 2025: Global Industry Analysis by Top Players, Types, Key Regions and Applications – The Scarlet

The global Stem Cell-Derived Cells market study presents an all in all compilation of the historical, current and future outlook of the market as well as the factors responsible for such a growth. With SWOT analysis, the business study highlights the strengths, weaknesses, opportunities and threats of each Stem Cell-Derived Cells market player in a comprehensive way. Further, the Stem Cell-Derived Cells market report emphasizes the adoption pattern of the Stem Cell-Derived Cells across various industries.

The Stem Cell-Derived Cells market report examines the operating pattern of each player new product launches, partnerships, and acquisitions has been examined in detail.

Request Sample Report @ https://www.persistencemarketresearch.co/samples/28780

key players in stem cell-derived cells market are focused on generating high-end quality cardiomyocytes as well as hepatocytes that enables end use facilities to easily obtain ready-made iPSC-derived cells. As the stem cell-derived cells market registers a robust growth due to rapid adoption in stem cellderived cells therapy products, there is a relative need for regulatory guidelines that need to be maintained to assist designing of scientifically comprehensive preclinical studies. The stem cell-derived cells obtained from human induced pluripotent stem cells (iPS) are initially dissociated into a single-cell suspension and later frozen in vials. The commercially available stem cell-derived cell kits contain a vial of stem cell-derived cells, a bottle of thawing base and culture base.

The increasing approval for new stem cell-derived cells by the FDA across the globe is projected to propel stem cell-derived cells market revenue growth over the forecast years. With low entry barriers, a rise in number of companies has been registered that specializes in offering high end quality human tissue for research purpose to obtain human induced pluripotent stem cells (iPS) derived cells. The increase in product commercialization activities for stem cell-derived cells by leading manufacturers such as Takara Bio Inc. With the increasing rise in development of stem cell based therapies, the number of stem cell-derived cells under development or due for FDA approval is anticipated to increase, thereby estimating to be the most prominent factor driving the growth of stem cell-derived cells market. However, high costs associated with the development of stem cell-derived cells using complete culture systems is restraining the revenue growth in stem cell-derived cells market.

The global Stem cell-derived cells market is segmented on basis of product type, material type, application type, end user and geographic region:

Segmentation by Product Type

Segmentation by End User

The stem cell-derived cells market is categorized based on product type and end user. Based on product type, the stem cell-derived cells are classified into two major types stem cell-derived cell kits and accessories. Among these stem cell-derived cell kits, stem cell-derived hepatocytes kits are the most preferred stem cell-derived cells product type. On the basis of product type, stem cell-derived cardiomyocytes kits segment is projected to expand its growth at a significant CAGR over the forecast years on the account of more demand from the end use segments. However, the stem cell-derived definitive endoderm cell kits segment is projected to remain the second most lucrative revenue share segment in stem cell-derived cells market. Biotechnology and pharmaceutical companies followed by research and academic institutions is expected to register substantial revenue growth rate during the forecast period.

North America and Europe cumulatively are projected to remain most lucrative regions and register significant market revenue share in global stem cell-derived cells market due to the increased patient pool in the regions with increasing adoption for stem cell based therapies. The launch of new stem cell-derived cells kits and accessories on FDA approval for the U.S. market allows North America to capture significant revenue share in stem cell-derived cells market. Asian countries due to strong funding in research and development are entirely focused on production of stem cell-derived cells thereby aiding South Asian and East Asian countries to grow at a robust CAGR over the forecast period.

Some of the major key manufacturers involved in global stem cell-derived cells market are Takara Bio Inc., Viacyte, Inc. and others.

The report covers exhaustive analysis on:

Regional analysis includes

Report Highlights:

Buy the report at a discounted rate!!! Exclusive offer!!!

Request Report Methodology @ https://www.persistencemarketresearch.co/methodology/28780

The Stem Cell-Derived Cells market report offers a plethora of insights which include:

The Stem Cell-Derived Cells market report answers important questions which include:

The Stem Cell-Derived Cells market report considers the following years to predict the market growth:

For any queries get in touch with Industry Expert @ https://www.persistencemarketresearch.co/ask-an-expert/28780

Why Choose Stem Cell-Derived Cells Market Report?

Stem Cell-Derived Cells Market Reportfollows a multi- disciplinary approach to extract information about various industries. Our analysts perform thorough primary and secondary research to gather data associated with the market. With modern industrial and digitalization tools, we provide avant-garde business ideas to our clients. We address clients living in across parts of the world with our 24/7 service availability.

Read more from the original source:

Stem Cell-Derived Cells Market Forecast to 2025: Global Industry Analysis by Top Players, Types, Key Regions and Applications - The Scarlet

Read more
Keio University gets OK for iPS-based heart cell transplant plan – The Japan Times

A health ministry panel on Thursday approved a Keio University clinical research project to transplant heart muscle cells made from induced pluripotent stem (iPS) cells into heart disease patients.

The research will be carried out by a team led by Prof. Keiichi Fukuda for three people between 20 and 74 suffering from dilated cardiomyopathy, which lowers the hearts power to pump blood. The first transplant will be conducted by the end of this year at the earliest.

The team will use iPS cells made by Kyoto University from the blood of a person who has a special immunological type with less risk of rejection.

The team will transform the iPS cells into heart muscle cells and inject about 50 million of them into the heart using a special syringe. Immunosuppressive drugs will be used for about half a year, and the team will spend a year checking to see whether the treatment leads to the development of tumors and irregular heartbeat or whether it restores heart function.

In January, Osaka University conducted the worlds first transplant of heart muscle cells made from iPS cells. The heart muscle cells were made into sheets and pasted on the surface of the patients heart so that a substance they emit can help regenerate the heart muscles. The cells themselves, however, disappear quickly.

Meanwhile, Keio University has confirmed in an experiment on monkeys that cells colonize after a transplant and heart function improves.

The university expects that transplanted cells will colonize over a long period also in the upcoming clinical research project.

According to the team, there are about 25,000 dilated cardiomyopathy patients in Japan.

A startup led by Fukuda is planning a clinical trial aimed at commercializing the iPS-derived cells, hoping they will also be used for the treatment of other cardiac diseases.

See the rest here:

Keio University gets OK for iPS-based heart cell transplant plan - The Japan Times

Read more