Lai P, Weng J, Guo L, Chen X, Du X. Novel insights into MSC-EVs therapy for immune diseases. Biomark Res. 2019;7:6.

Article Google Scholar

Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 2017;6(12):217385.

Article Google Scholar

Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):20616. https://doi.org/10.1016/j.stem.2009.02.001.

Article Google Scholar

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy position statement. Cytotherapy. 2006;8(4):3157.

Article Google Scholar

Samsonraj RM, Rai B, Sathiyanathan P, Puan KJ, Rtzschke O, Hui JH, Raghunath M, Stanton LW, Nurcombe V, Cool SM. Establishing criteria for human mesenchymal stem cell potency. Stem Cells. 2015;33(6):187891.

Article Google Scholar

Samsonraj RM, Raghunath M, Hui JH, Ling L, Nurcombe V, Cool SM. Telomere length analysis of human mesenchymal stem cells by quantitative PCR. Gene. 2013;519(2):34855.

Article Google Scholar

dAngelo M, Cimini A, Castelli V. Insights into the effects of mesenchymal stem cell-derived secretome in Parkinsons disease. Int J Mol Sci. 2020;21(15):5241. https://doi.org/10.3390/ijms21155241.

Article Google Scholar

Camilleri ET, Gustafson MP, Dudakovic A, Riester SM, Garces CG, Paradise CR, Takai H, Karperien M, Cool S, Sampen HJ, Larson AN, Qu W, Smith J, Dietz AB, van Wijnen AJ. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther. 2016;7(1):107.

Article Google Scholar

Kim H-J, Im G-I. Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: Greater doses of growth factor are necessary. J Orthop Res. 2009;27(5):6129. https://doi.org/10.1002/jor.20766.

Article Google Scholar

Li C, Zhang W, Jiang X, Mao N. Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res. 2007;330(3):43746. https://doi.org/10.1007/s00441-007-0504-5.

Article Google Scholar

Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem cells (Dayton, Ohio). 2004;22(5):64958. https://doi.org/10.1634/stemcells.22-5-649.

Article Google Scholar

Zheng Y-B, Gao Z-L, Xie C, Zhu H-P, Peng L, Chen J-H, Chong YT. Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study. Cell Biol Int. 2008;32(11):143948. https://doi.org/10.1016/j.cellbi.2008.08.015.

Article Google Scholar

Kern S, Eichler H, Stoeve J, Klter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells (Dayton, Ohio). 2006;24(5):1294301. https://doi.org/10.1634/stemcells.2005-0342.

Article Google Scholar

Secco M, Zucconi E, Vieira NM, Fogaa LLQ, Cerqueira A, Carvalho MDF, Jazedje T, Okamoto OK, Muotri AR, Zatz M. Multipotent stem cells from umbilical cord: cord is richer than blood. Stem cells (Dayton, Ohio). 2008;26(1):14650. https://doi.org/10.1634/stemcells.2007-0381.

Article Google Scholar

Panepucci RA, Siufi JLC, Silva WA, Proto-Siquiera R, Neder L, Orellana M, Rocha V, Covas DT, Zago MA. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem cells (Dayton, Ohio). 2004;22(7):126378. https://doi.org/10.1634/stemcells.2004-0024.

Article Google Scholar

Kunimatsu R, Nakajima K, Awada T, Tsuka Y, Abe T, Ando K, Hiraki T, Kimura A, Tanimoto K. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrowderived mesenchymal stem cells. Biochem Biophys Res Commun. 2018;501(1):1938. https://doi.org/10.1016/j.bbrc.2018.04.213.

Article Google Scholar

Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell. 2007;99(8):46574. https://doi.org/10.1042/BC20070013.

Article Google Scholar

Berry SE. Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions. Stem Cells Transl Med. 2015;4(1):918. https://doi.org/10.5966/sctm.2014-0060.

Article Google Scholar

Romitti PA, Zhu Y, Puzhankara S, James KA, Nabukera SK, Zamba GKD, Ciafaloni E, Cunniff C, Druschel CM, Mathews KD, Matthews DJ, Meaney FJ, Andrews JG, Conway KMC, Fox DJ, Street N, Adams MM, Bolen J. Prevalence of Duchenne and Becker muscular dystrophies in the United States. Pediatrics (Evanston). 2015;135(3):513-21. https://doi.org/10.1542/peds.2014-2044.

Rajput BS, Chakrabarti SK, Dongare VS, Ramirez CM, Deb KD. human umbilical cord mesenchymal stem cells in the treatment of duchenne muscular dystrophy: safety and feasibility study in India. J Stem Cells. 2015;10(2):14156.

Google Scholar

Nitahara-Kasahara Y, Kuraoka M, Oda Y, Hayashita-Kinoh H, Takeda S, Okada T. Enhanced cell survival and therapeutic benefits of IL-10-expressing multipotent mesenchymal stromal cells for muscular dystrophy. Stem Cell Res Ther. 2021;12(1):105.

Article Google Scholar

Secco M, Bueno C, Vieira NM, Almeida C, Pelatti M, Zucconi E, Bartolini P, Vainzof M, Miyabara EH, Okamoto OK, Zatz M. Systemic Delivery of Human Mesenchymal Stromal Cells Combined with IGF-1 Enhances Muscle Functional Recovery in LAMA2dy/2j Dystrophic Mice. Stem cell reviews. 2013;9(1):93-109. https://doi.org/10.1007/s12015-012-9380-9.

Aldridge RJM, Urbaniak JR. Avascular necrosis of the femoral head: etiology, pathophysiology, classification, and current treatment guidelines. Am J Orthop (Belle Mead NJ). 2004;33(7):327.

Google Scholar

Mankin HJ. Nontraumatic necrosis of bone (Osteonecrosis). N Engl J Med. 1992;326(22):14739. https://doi.org/10.1056/NEJM199205283262206.

Article Google Scholar

Petek D, Hannouche D, Suva D. Osteonecrosis of the femoral head: pathophysiology and current concepts of treatment. EFORT Open Reviews. 2019;4(3):8597. https://doi.org/10.1302/2058-5241.4.180036.

Article Google Scholar

Liu X, Li Q, Niu X, Hu B, Chen S, Song W, Ding J, Zhang C, Wang Y. Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis. Int J Biol Sci. 2017;13(2):23244. https://doi.org/10.7150/ijbs.16951.

Article Google Scholar

Kang JS, Suh YJ, Moon KH, Park JS, Roh TH, Park MH, Ryu DJ. Clinical efficiency of bone marrow mesenchymal stem cell implantation for osteonecrosis of the femoral head: a matched pair control study with simple core decompression. Stem Cell Res Ther. 2018;9(1):274.

Article Google Scholar

Xu H, Wang C, Liu C, Peng Z, Li J, Jin Y, Wang Y, Guo J, Zhu L. Cotransplantation of mesenchymal stem cells and endothelial progenitor cells for treating steroid-induced osteonecrosis of the femoral head. Stem Cells Transl Med. 2021;10(5):78196. https://doi.org/10.1002/sctm.20-0346.

Article Google Scholar

Ueda S, Shimasaki M, Ichiseki T, Ueda Y, Tsuchiya M, Kaneuji A, Kawahara N. Prevention of glucocorticoid-associated osteonecrosis by intravenous administration of mesenchymal stem cells in a rabbit model. BMC Musculoskelet Disord. 2017;18(1):480.

Article Google Scholar

Bronner-Fraser M, McKeown SJ. Saving face: rescuing a craniofacial birth defect. Nat Med. 2008;14(2):1156. https://doi.org/10.1038/nm0208-115.

Article Google Scholar

Akita S, Fukui M, Nakagawa H, Fujii T, Akino K. Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor. Wound repair and regeneration. 2004;12(2):2529. https://doi.org/10.1111/j.1067-1927.2004.012118.x.

Article Google Scholar

Ma J, Both SK, Ji W, Yang F, Prins H-J, Helder MN, Pan J, Cui F-Z, Jansen JA, van den Beucken JJP. Adipose tissue-derived mesenchymal stem cells as monocultures or cocultures with human umbilical vein endothelial cells: performance in vitro and in rat cranial defects. J Biomed Mater Res, Part A. 2014;102(4):102636. https://doi.org/10.1002/jbm.a.34775.

Article Google Scholar

Srinivasan A, Teo N, Poon KJ, Tiwari P, Ravichandran A, Wen F, Teoh SH, Lim TC, Toh Y-C. Comparative craniofacial bone regeneration capacities of mesenchymal stem cells derived from human neural crest stem cells and bone marrow. ACS Biomater Sci Eng. 2021;7(1):20721. https://doi.org/10.1021/acsbiomaterials.0c00878.

Article Google Scholar

Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, Della Rocca GJ, Mehta S, McKinley T, Wang Z, Steen RG. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151(11):e162775.

Article Google Scholar

Toosi S, Behravan N, Behravan J. Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J Biomed Mater Res, Part A. 2018;106(9):255262. https://doi.org/10.1002/jbm.a.36433.

Article Google Scholar

Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H, Naderi-Meshkin H, Moradi A, Rajabioun M, Alipour F, Ghasemi S, Zare M, Mirahmadi M, Bidkhori HR, Bahrami AR. Application of mesenchymal stem cells to enhance non-union bone fracture healing. J Biomed Mater Res, Part A. 2019;107(2):30111. https://doi.org/10.1002/jbm.a.36441.

Article Google Scholar

Dilogo IH, Primaputra MRA, Pawitan JA, Liem IK. Modified masquelet technique using allogeneic umbilical cord-derived mesenchymal stem cells for infected non-union femoral shaft fracture with a 12 cm bone defect: a case report. Int J Surg Case Rep. 2017;34:116. https://doi.org/10.1016/j.ijscr.2017.03.002.

Article Google Scholar

Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W, Wang H, Liu H, Zhou H, Chen Y. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther. 2020;11(1):38.

Article Google Scholar

Yelin E, Weinstein S, King T. The burden of musculoskeletal diseases in the United States. Semin Arthritis Rheum. 2016;46(3):259-60. https://doi.org/10.1016/j.semarthrit.2016.07.013. Epub 2016 Jul 26.

Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213(3):62634. https://doi.org/10.1002/jcp.21258.

Article Google Scholar

2022 Alzheimers disease facts and figures. Alzheimers Dement. 2022;18(4):700-89. https://doi.org/10.1002/alz.12638. Epub 2022 Mar 14.

Ge M, Zhang Y, Hao Q, Zhao Y, Dong B. Effects of mesenchymal stem cells transplantation on cognitive deficits in animal models of Alzheimers disease: a systematic review and meta-analysis. Brain Behav. 2018;8(7):e00982.

Article Google Scholar

Sukoff Rizzo SJ, Masters A, Onos KD, Quinney S, Sasner M, Oblak A, Lamb BT, Territo PR. Improving preclinical to clinical translation in Alzheimers disease research. Alzheimers & dementia : translational research & clinical interventions. 2020;6(1):e12038-n/a. https://doi.org/10.1002/trc2.12038.

Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, Choi SJ, Kwon H, Yun HJ, Lee JM, Kim ST, Choe YS, Lee K-H, Na DL. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimers disease dementia: a phase 1 clinical trial. Alzheimers & dementia: translational research & clinical interventions. 2015;1(2):95102. https://doi.org/10.1016/j.trci.2015.06.007.

Article Google Scholar

Sha S, Shen X, Cao Y, Qu L. Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimers disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/-catenin pathway. Aging. 2021;13(11):15285306. https://doi.org/10.18632/aging.203088.

Article Google Scholar

Nakano M, Kubota K, Kobayashi E, Chikenji TS, Saito Y, Konari N, Fujimiya M. Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimers disease model by increasing the expression of microRNA-146a in hippocampus. Sci Rep. 2020;10(1):10772.

Article Google Scholar

Zhao Y, Chen X, Wu Y, Wang Y, Li Y, Xiang C. Transplantation of human menstrual blood-derived mesenchymal stem cells alleviates alzheimers disease-like pathology in APP/PS1 transgenic mice. Front Mol Neurosci. 2018;11:140.

Article Google Scholar

Mendes-Pinheiro B, Anjo SI, Manadas B, Da Silva JD, Marote A, Behie LA, Teixeira FG. Bone marrow mesenchymal stem cells secretome exerts neuroprotective effects in a Parkinsons disease rat model. Front Bioeng Biotechnol. 2019;7:294.

Article Google Scholar

Sun Z, Gu P, Xu H, Zhao W, Zhou Y, Zhou L, Zhang Z, Wang W, Han R, Chai X, An S. Human Umbilical cord mesenchymal stem cells improve locomotor function in Parkinsons disease mouse model through regulating intestinal microorganisms. Front Cell Dev Biol. 2021;9:808905.

Article Google Scholar

Park HJ, Lee PH, Bang OY, Lee G, Ahn YH. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinsons disease. J Neurochem. 2008;107(1):14151. https://doi.org/10.1111/j.1471-4159.2008.05589.x.

Article Google Scholar

Chen D, Fu W, Zhuang W, Lv C, Li F, Wang X. Therapeutic effects of intranigral transplantation of mesenchymal stem cells in rat models of Parkinsons disease. J Neurosci Res. 2017;95(3):90717. https://doi.org/10.1002/jnr.23879.

Article Google Scholar

Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med. 2015;372(3):24963. https://doi.org/10.1056/NEJMra1311488.

Article Google Scholar

Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. The Lancet (British edition). 1999;354(9192):17715. https://doi.org/10.1016/S0140-6736(99)04137-9.

More:

Clinical utility of mesenchymal stem/stromal cells in regenerative ...

Related Post

Leave a comment

Your email address will not be published. Required fields are marked *


Refresh