Convergence: EMA close to finalizing guidance for advanced therapies – Regulatory Focus

The European Medicines Agency is on the verge of releasing revised guidance for advanced therapy medicinal products containing genetically modified cells, which includes chimeric antigen receptor (CAR)-T cell therapies.

The Guideline on quality, non-clinical and clinical aspects of medicinal products containing genetically modified cells was originally issued in 2012 but underwent revision and consultation from July 2018-July 2019. The revised version is expected to be adopted in October and published in November, according to Ana Hidalgo-Simon, MD, PhD, head of advanced therapies at EMA. She previewed the major changes at RAPS Convergence 2020.

There were an enormous number of comments on the document, Hidalgo-Simon said.The agency is also working on a Q&A document on principles of good manufacturing practices (GMP) for Advanced Therapy Medicinal Products (ATMP) starting material. There will likely be consultation on the document in 2021, she said. (RELATED: Regulation of advanced therapy medicinal products in the EU, Regulatory Focus, 16 July 2020.)

Major changesEMA chose to update the guidance to reflect the increase in clinical experience with these therapies, particularly chimeric antigen receptor-T (CAR-T) cells; to cover new categories of products, such as induced pluripotent stem (iPS) cells; and to allow for consideration of new tools for genetic modification of cells, such as genome editing technologies, she said.

The main quality updates are related to starting materials, the manufacturing process, and characterization and release. For example, the starting materials guidance will now include genome editing tools, while the manufacturing process includes a new section on comparability. The characterization and release portion of the guidance includes specific advice for CAR-T cells.

Additionally, the guidance calls for dose-finding studies to explore safety, toxicity, and anti-tumor activity at different dose levels, to define the threshold dose required for anti-tumor effect, and to define the recommended dose or range for Phase 2 studies. She said sponsors need to show a solid rationale for the criteria being used to find the dose.

The guidance also calls for Phase 3 confirmatory trials to follow a randomized controlled design, comparing the CAR-T cell therapy to a reference regimen, unless otherwise scientifically justified. Single-arm studies will continue to be allowed, but they will be the exception, Dr. Hidalgo-Simon said.

Be very careful with the design of the trials, she advised. The assumptions need to be really, very well backed.

When it comes to safety, the guidance calls for a 15-year follow period. While sponsors wont have all the answers at the time of submission, Hidalgo-Simon said they should have a plan that includes monitoring during the post-authorization period.

Hidalgo-Simon also advised sponsors to think beyond the approval process and consider what evidence will be needed to convince other stakeholders -- from patients to payers -- about the safety and efficacy of the therapy.

Avoiding development pitfallsRichard Dennett, PhD, the senior director of chemistry, manufacturing and controls regulatory affairs at PPD, also participated in the RAPS Convergence 2020 session on advanced therapies. He reviewed development points where companies can run into trouble with advanced therapies, particularly CAR-T cell products.Dennett recommended that product sponsors keep the end in mind when developing advanced therapies by focusing on the target product profile at the beginning of development. That profile includes the indication for which approval will be sought and the incidence of that indication; other considerations include mode of action, demographics, how much of the product needs to be produced, and market access and reimbursement considerations.

He also outlined several areas where developers should focus to create a watertight regulatory package, including sufficient product characterization, potency assay, impurities, formulation, stability, lack of sufficient development batches, and validation strategy.

Dennett urged developers to dive into the growing number of regulatory guidance documents for advanced therapies. In addition to the European guidance documents, developers should consultthe US Food and Drug Administrations Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs), which was released in January 2020. (RELATED: Advanced therapies: Trip hazards on the development pathway, Regulatory Focus, 02 August 2020)

Live and breathe the guidances that are out there, Dennett advised. They allow us to understand what expectations we need to meet.

The key to success in advancing CAR-T cell therapies is the mitigation of risk, Dennett said: The biggest risk is the one that you havent thought of.RAPS 2020 Convergence

Go here to see the original:

Convergence: EMA close to finalizing guidance for advanced therapies - Regulatory Focus

Read more
Heart tissue regeneration: a "cell-less" therapy may be the key – Emergency-Live

This study for the regeneration of the heart tissue started reporting: It is a recent piece of news, their approach, which accelerated recovery from heart attack in pigs, could address issues with safety and effectiveness that have prevented whole-cell heart therapies from reaching clinical adoption. In recent years, researchers have explored the possibility of using transplants of heart cells grown from induced pluripotent stem cells to heal cardiac tissue in the aftermath of events such as heart attacks.

However, transplanted heart cells often fail to engraft within the recipient and perish after a few days. Clinicians also remain worried that the cells that do engraft could cause severe health issues like arrythmia and even contribute to the formation of tumors in the long run. Instead of transplanting whole cells, Gao et al. tackled these issues by only administering exosomes, or tiny containers for proteins and DNA that are secreted by cells.

Specifically, they isolated exosomes from three types of human heart cells smooth muscle cells, cardiomyocytes, and endothelial cells and injected them into the hearts of pigs after heart attack. Pigs that received the exosomes recovered more heart function and showed smaller scars compared with untreated animals and improved as well as pigs that received whole cell transplants. Gao et al. say that the acellular exosomes could enable physicians to exploit the cardioprotective and reparative properties of hiPSC-derived cells while avoiding complexities associated with cell storage, transportation, and immune rejection.

Here is the original post:

Heart tissue regeneration: a "cell-less" therapy may be the key - Emergency-Live

Read more
Century Therapeutics Announces Appointment of Michael C. Diem as Chief Business Officer – StreetInsider.com

As you were browsing http://www.streetinsider.com something about your browser made us think you were a bot.

If you are interested in http://www.streetinsider.com content, APIs are available. Please contact us here http://www.streetinsider.com/signup_content.php

After completing the CAPTCHA below, you will immediately regain access to http://www.streetinsider.com.

Read more:

Century Therapeutics Announces Appointment of Michael C. Diem as Chief Business Officer - StreetInsider.com

Read more
Stemson Therapeutics Secures $7.5M Seed Financing for the Development of Breakthrough Hair Regeneration Therapy to Cure Hair Loss – Business Wire

SAN DIEGO--(BUSINESS WIRE)--Stemson Therapeutics announced today a $7.5 million seed financing led by Allergan Aesthetics, an AbbVie Company, and impact investor Fortunis Capital to advance development of Stemsons therapeutic solution to cure hair loss. Stemson aims to restore human hair growth with a novel approach using the patients own cells to generate new hair follicles. Allergan Aesthetics is a world-leading medical aesthetics company. Fortunis Capital, a London-based venture capital firm, is committed to continuing support of Stemsons regenerative cell therapy to treat hair loss. Fortunis Capitals new Impact Fund intends to invest in companies, such as Stemson, who offer significant social or environmental benefit.

Stemsons novel cell therapy approach to treat hair loss has game-changing potential. Their experienced management team is poised to elevate its proprietary regenerative cell therapy method as it begins the next phase of its preclinical program, stated Sir Andrew Ross, Director of Investments at Fortunis Capital. Fortunis Capital is committed to supporting companies that are creating innovative solutions with worldwide social or environmental benefit, and we believe that Stemson has the team, technology and the tools in place to develop a therapy capable of solving the hair loss problem for millions of people in need.

The seed funding supports the preclinical development of Stemsons Induced Pluripotent Stem Cell (iPSC) based technology, which is capable of producing the cell types required to initiate hair follicle growth. Globally, hundreds of millions of men and women suffer from various forms of hair loss, and no solution today is capable of generating a new supply of follicles for patients in need.

Allergan Aesthetics research and development efforts are focused on products and technologies that drive the advancement of aesthetics medicine. Hair loss is a significant unmet medical need for millions of men and women, and Stemson Therapeutics efforts to develop novel methods to regrow hair is an opportunity to make a difference in this area, said Yehia Hashad, M.D. Senior Vice President, Research and Development, Allergan Aesthetics.

The initial seed financing allows Stemson to expand its management team and R&D resources, while recent approval of a foundational patent provides stability surrounding the Companys efforts to develop its radical solution for hair growth. The additions of Meghan Samberg, Ph.D. as Vice President of R&D and Preclinical Development, and Cenk Sumen, Ph.D. as Chief Technology Officer, complement the work of Stemsons cofounder and Chief Scientific Officer, Dr. Alexey Terskikh and the R&D team. Stemson received approval in the United States of its cornerstone Human Induced Pluripotent Stem Cell (iPSC) method patent licensed exclusively from the Sanford Burnham Prebys Medical Discovery Institute. The patent covers a novel process developed by Dr. Terskikh to differentiate iPSC into dermal papilla cells, the cell type primarily responsible for controlling hair follicle generation and hair cycling. The patent secures foundational methods using iPSC cell therapy to grow hair.

Stemson has established the biological and technical building blocks which are needed to solve the problem of hair loss. A truly curative solution is now feasible, and we have built a world-class team to deliver a therapy for the millions of hair loss sufferers across the world, said Geoff Hamilton, cofounder and chief executive officer of Stemson Therapeutics. We are grateful for support from Allergan Aesthetics and Fortunis Capital, and we look forward to expanding our base of investors as we move toward our first human clinical trial.

About Cell Regeneration Technology

Human Induced Pluripotent Stem Cell (iPSC) have the unique capability to replicate indefinitely and give rise to all cell types of the human body, including the cell types required for repair. iPSC-based technology is capable of producing the cell types required to initiate hair follicle growth. As a new therapeutic platform, iPSCs represent an emerging area of regenerative cell therapy. Stemson is one of a growing number of companies at the forefront in developing iPSC-based treatments.

About Fortunis Capital

Fortunis Capital is a London-based impact investment venture capital firm, whose vision is to support the positive evolution of society through sound and intelligent investment. The Company is the 101st signatory to the IFC led impact principles scheme under the auspices of the World Bank and a UK Home Office endorsing body that seek out and supports global innovation. Fortunis Capital invests in concepts that support the positive evolution of society by providing solutions to problems worth solving. Fortunis Capital seeks ground-breaking and innovative concepts and drives these companies forward to success. For more information about Fortunis Capital and their impact venture capital investing, please visit http://www.fortuniscapital.co.uk.

About Stemson Therapeutics

Stemson Therapeutics is driven by a vision where anyone battling the emotional trauma or social stigma of hair loss has an opportunity to truly cure their condition and safely restore their natural hair. Stemson was founded in 2018 based on a novel cell engineering process capable of producing the cell types required to regenerate hair follicles. Our engineered cells are combined with a unique tissue engineering solution and are capable of generating a net new supply of hair follicles for patients in need. Stemson Therapeutics is headquartered in San Diego, CA. For more information, please visit http://www.stemsontx.com.

Read more from the original source:

Stemson Therapeutics Secures $7.5M Seed Financing for the Development of Breakthrough Hair Regeneration Therapy to Cure Hair Loss - Business Wire

Read more
Stemson Therapeutics Secures GBP6m in seed financing – Private Equity Wire

Stemson Therapeutics announced today 6 million seed financing from impact investor Fortunis Capital and Allergan Aesthetics, an AbbVie Company, to advance development of Stemsons therapeutic solution to cure hair loss.

Stemson aims to restore human hair growth with a novel approach using the patients own cells to generate new hair follicles. Allergan Aesthetics is a world leading medical aesthetics company. Fortunis Capital, a London-based venture capital firm is committed to continuing support of Stemsons regenerative cell therapy to treat hair loss. Fortunis Capitals new Impact Fund intends to invest in companies, such as Stemson, which offer significant social or environmental benefit.

Stemsons novel cell therapy approach to treat hair loss has game-changing potential. Their experienced management team is poised to elevate its proprietary regenerative cell therapy method as it begins the next phase of its preclinical programme, says Sir Andrew Ross, Director of Investments at Fortunis Capital. Fortunis Capital is committed to supporting companies that are creating innovative solutions with worldwide social or environmental benefit and we believe that Stemson has the team, technology and the tools in place to develop a therapy capable of solving the hair loss problem for millions of people in need.

The seed funding supports the preclinical development of Stemsons Induced Pluripotent Stem Cell (iPSC) based technology which is capable of producing the cell types required to initiate hair follicle growth. Globally, hundreds of millions of men and women suffer from various forms of hair loss, and no solution today is capable of generating a new supply of follicles for patients in need.

Allergan Aesthetics research and development efforts are focused on products and technologies that drive the advancement of aesthetics medicine. Hair loss is a significant unmet medical need for millions of men and women, and Stemson Therapeutics efforts to develop novel methods to regrow hair is an opportunity to make a difference in this area, says Yehia Hashad, MD Senior Vice President, Research and Development, Allergan Aesthetics.

The initial seed financing allows Stemson to expand its management team and R&D resources, while recent approval of a foundational patent provides stability surrounding the Companys efforts to develop its radical solution for hair growth. The additions of Meghan Samberg, PhD as Vice President of R&D and Preclinical Development and Cenk Sumen, PhD as Chief Technology Officer complement the work of Stemsons cofounder and Chief Scientific Officer, Dr Alexey Terskikh and the R&D team. Stemson received approval in the United States of its cornerstone Human Induced Pluripotent Stem Cell (iPSC) method patent licensed exclusively from the Sanford Burnham Prebys Medical Discovery Institute. The patent covers a novel process developed by Dr Terskikh to differentiate iPSC into dermal papilla cells, the cell type primarily responsible for controlling hair follicle generation and hair cycling. The patent secures foundational methods using iPSC cell therapy to grow hair.

Stemson has established the biological and technical building blocks which are needed to solve the problem of hair loss. A truly curative solution is now feasible, and we have built a world class team to deliver a therapy for the millions of hair loss sufferers across the world, says Geoff Hamilton, cofounder and chief executive officer of Stemson Therapeutics. We are grateful for support from Allergan Aesthetics and Fortunis Capital, and we look forward to expanding our base of investors as we move toward our first human clinical trial.

See the rest here:

Stemson Therapeutics Secures GBP6m in seed financing - Private Equity Wire

Read more
Treatment, Access to Caregivers Among Factors Affecting QoL in MM – AJMC.com Managed Markets Network

Investigators from the First Affiliated Hospital of Sun-Yat Sen, including corresponding author Juan Li, PhD, noted that while QoL has been studied extensively in patients with MM, most of the research has been conducted on western populations, and such studies tend to be based on clinical trial data, which they said is not representative of the wider population of patients with MM.

In the current study, the authors sent out a questionnaire to people with MM in all 27 provinces of China. A total of 430 people responded, and they had an average age of 55.7 years.

The results of the survey showed a number of factors can affect HRQoL. Among them, patients who underwent autologous stem cell transplantation (ASCT) had higher HRQoL than those who did not have the transplant. However, toxicities were a major concern. A vast majority (91.5%) of patients on maintenance therapy said they intended to stop the treatment, mostly due to adverse events and the high cost of treatment.

The application of ASCT has significantly improved the prognosis of patients with MM and prolonged the OS of patients, Li and colleagues wrote. However, as patient survival is prolonged, patients experience different levels of pain due to treatment-related toxicities.

Patient HRQoL scores were improved when patients were diagnosed quickly, though the study found only 16.7% of patients were diagnosed within a month of the onset of symptoms. The reasons for the delayed diagnosis included lack of awareness of the severity of the condition, failure by the hospital to confirm the diagnosis quickly, and inability to pay for care.

Access to a caregiver benefited patients HRQoL, but more than one-third (38.4%) did not have a caregiver. More than half of the patients (56.3%) said they had to travel to another city to receive care, another factor that negatively impacted their scores on functional and symptom measures, though it did not impact overall HRQoL, the authors said.

Four in 10 patients in the study reported psychosocial challenges, such as anxiety and depression.

Patients live with the uncertainty of a treatable but incurable cancer; they worry about how their illness will progress and are concerned about death and dying, the authors said. Overall, these findings suggest that patients need more psychological support during all phases of treatment.

Basic demographic factors, like age and sex, yielded mixed results. In a univariate analysis, both factors appeared to be associated with HRQoL. However, when investigators performed a multiple linear regression analysis, neither factor emerged as an independent predictor of HRQOL.

The authors said these data should provide clinicians with tools to identify patients who are at risk of diminished HRQoL.

Efforts should be made to identify persons at risk of low HRQOL earlier and improve the overall quality of life of these patients in China, they concluded.

Reference

Li X, Liu J, Chen M, et al. Health-related quality of life of patients with multiple myeloma: A real-world study in China. Cancer Med. Published online September 2, 2020. doi:10.1002/cam4.3391

Visit link:

Treatment, Access to Caregivers Among Factors Affecting QoL in MM - AJMC.com Managed Markets Network

Read more
LabRoots Announces Speakers to Present Cutting-Edge Research Findings at its 4th Annual Cell Biology Virtual Conference – PR Web

Cell Biology Virtual Event, September 23, 2020

YORBA LINDA, Calif. (PRWEB) September 17, 2020

LabRoots, the leading scientific social networking website offering premier, interactive virtual events and webinars, will be hosting its Cell Biology Virtual Event, scheduled on September 23, 2020. This day-long forum marks the fourth annual event that will attract innovative researchers, top scientists, biologists, and leading academia and industry from across the globe.

Emphasizing the principals and fundamentals of biology, the one-day program features four sessions encompassing Organelle Dynamics, Cell Biology of Cancer, Extra Cellular Matrices, and Exosomes convening global leaders to present their latest progress in cell research. Discussions on transformative new technologies and applications in the field will be unveiled via over 15 scientific presentations on topics such as the role of Nox-derived Reactive Oxygen Species in Axonal Growth and Guidance, the journey into discovery oncology at the crossroad of cell biology, Extracellular Matrix in Renal Development and Cancer, GeoMx Digital Spatial Profiling read-out for Next-Generation Sequencers with the Cancer Transcriptome Atlas (CTA), Extracellular Vesicles and Chronic Kidney Disease, and Beyond the Culture Flask: How Membrane- and Microfluidic-based Platforms can create more Physiologically Relevant Tissue Culture Systems, naming a few.

This years first keynote address will be given by internationally recognized Muller Fabbri, MD, PhD, Associate Professor, Co-Leader Cancer Biology Program, University of Hawaii Cancer Center, explaining how MicroRNAs in Extracellular Vesicles orchestrate the biology of the Tumor Microenvironment. The programs second keynote will be delivered by Steve Caplan, PhD, Professor and Vice Chair for Administration, Dept. of Biochemistry and Molecular Biology, Director, UNMC Advanced Microscopy Core Facility on sorting out the mechanisms of endocytic recycling. Following, Benedetta Bussolati, Associate Professor of Nephrology, University of Torino, President of the Italian Society for Extracellular Vesicles, and internationally known for her studies of stem cell biology and regenerative medicine, will explore Extracellular vesicles in Regenerative Medicine during her keynote presentation. Lastly, the final keynote talk presented by Kenneth W. Witwer, PhD, Associate Professor, Molecular and Comparative Pathobiology, John Hopkins University of School of Medicine will explore starting at the source: tissue extracellular vesicles and Alzheimers disease.

This Cell Biology event produced by Labroots includes different tracks on the most exciting approaches to understand Cell Biology, ranging from exosome/extracellular vesicles to proteomics and cancer biology, said Dr. Laura Perin, Assistant Professor at the Keck School of Medicine, University of Southern California, and Planning Committee Member. The Committee is grateful to the high caliber leaders and experts that will share insights and novel research which are fundamental in advancing the field of medicine bringing innovative avenues for the discovery of new treatments for our patient populations.

Cell Biology 2020 is committed to continuing our unique tradition of bringing the scientific community together providing the discovery, innovation, and medical advances that drive biomedical research forward, said Greg Cruikshank, Chief Executive Officer of LabRoots. For the 4th consecutive year, were delighted to showcase some of the brightest minds in cell science on the agenda, while offering cutting-edge educational content for our attendees on a global front.

The online event produced on LabRoots signature platform allows participants to learn and connect seamlessly across all desktop and mobile devices. Featuring up-to-date emerging findings from the field in the auditorium, poster and exhibit halls, and a networking lounge to foster collaborations, Cell Biology 2020 delivers an all-inclusive interactive environment. By attending this event, you can earn 1 Continuing Education credit per presentation for a maximum of 30 credits.

To register for the event and for more information, click here. Participants can follow the conversation online by using #LRcellbio.

About LabRoots LabRoots is the leading scientific social networking website, and primary source for scientific trending news and premier educational virtual events and webinars and more. Contributing to the advancement of science through content sharing capabilities, LabRoots is a powerful advocate in amplifying global networks and communities. Founded in 2008, LabRoots emphasizes digital innovation in scientific collaboration and learning. Offering more than articles and webcasts that go beyond the mundane and explore the latest discoveries in the world of science, LabRoots users can stay atop their field by gaining continuing education credits from a wide range of topics through their participation in the webinars and virtual events.

Share article on social media or email:

See the article here:

LabRoots Announces Speakers to Present Cutting-Edge Research Findings at its 4th Annual Cell Biology Virtual Conference - PR Web

Read more
The Top 10 Biotech Companies Brewing at… – Labiotech.eu

Here are the top biotech companies you will find in Oxford, a city with an old scientific tradition and an enormous output of biotech applications.

Oxford is well known for its university, one of the oldest in Europe and considered to be one of the best in the world. Recently, the University of Oxford has been the center of attention thanks to an experimental Covid-19 vaccine that the university is developing in partnership with big pharmaceutical companies. If successful, the vaccine, already in phase III testing, could be one of the first to get approval for this new disease.

The University of Oxford has hosted thousands of bright minds over the years. Thanks to its emphasis on technology transfer, the university has also helped a large number of them turn their ideas into successful spinout companies. The environment created around the university has also attracted many talents and businesses to the city, making it the ideal melting pot for new and promising ideas.

Biotech is one of the fortes of the innovation seen in the city of Oxford. So we consulted with local experts to put together a list of the most remarkable companies in the city, be it for their size, innovation, or influence in the sector.

Founded in 2008, Immunocore is one of just a few private biotech companies in Europe that are estimated to be worth over 1B. The company is tackling multiple forms of cancer as well as infectious and autoimmune diseases using T-cell receptor (TCR) technology. TCRs are proteins on the surface of immune T cells that are responsible for identifying a threat that must be destroyed, such as cancerous or infected cells. Immunocore aims to patients with engineered TCRs to circumvent the mechanisms by which these threats evade the immune system, restoring its ability to fight disease.

The company is collaborating on several projects with Genentech, AstraZeneca, Eli Lilly, and GSK. Its most advanced program is a treatment for uveal melanoma that is currently in phase III trials. Other programs target solid tumors, hepatitis, HIV, and type 1 diabetes.

Adaptimmune Therapeutics was founded at the same time as Immunocore with the goal of exploiting TCR technology in the form of T-cell therapy. The company engineers the TCRs naturally present on the patients own immune T cells to improve their ability to identify cancerous cells.

Adaptimmune is now getting ready to start late-stage clinical trials in multiple cancer types. Thanks to a deal with Astellas Pharma, the company is also gearing up to start clinical testing of a version of its T-cell therapy that doesnt require engineering each dose individually for each patient, using donor cells instead. Adaptimmune also has several partnerships with companies including GSK, Noile-Immune Biotech, and Alpine Immune Sciences.

Oxford Biodynamics was spun out of Oxford University in 2007 with the goal of developing liquid biopsy tests that can perform a diagnosis from just a drop of blood. The company specializes in epigenetics, that is changes to the structure of our DNA that determines which genes are switched on or off.

Oxford Biodynamics works in a wide range of indications, including cancer, diabetes, Alzheimers, multiple sclerosis, and rheumatoid arthritis among many others. The tests are not only designed to diagnose a disease; they can also be made to determine which patients are going to benefit the most from a specific drug, and how likely the disease is to progress faster or relapse.

With these tests, the company is supporting the development of personalized medicine approaches and helping drug developers increase their chances of succeeding in clinical trials. Partners include big pharma such as Pfizer and EMD, as well as universities and research institutes.

Chronos Therapeutics started out in 2009 as a spinout of the University of Oxford with the goal of developing drugs for age-related conditions. The companys lead program targets amyotrophic lateral sclerosis (ALS), the most common motor neuron disease, for which there are no treatments able to stop its progression.

Over time, the company has expanded its portfolio into other indications, particularly those that affect the brain, by acquiring assets from third parties. They include programs targeting fatigue caused by multiple sclerosis, addictive behaviors such as binge eating and alcohol use disorder, and post-traumatic stress disorder.

Evox Therapeutics is developing a drug delivery technology based on exosomes nanoparticles that our bodies naturally use to transport molecules. The company engineers exosomes to carry different types of drugs, such as proteins, RNA, or small drugs. The key advantage is that these natural carriers are able to reach targets that conventional drug delivery systems cant, such as the brain.

Founded in 2016, the company has signed big deals with Takeda and Eli Lilly. Its programs are all in preclinical testing and mostly target rare diseases. One of them targets the rare liver disorder argininosuccinic aciduria and is scheduled to enter clinical trials in 2021.

Exscientia is a pioneer in the application of artificial intelligence to drug discovery. The company uses AI to identify potential drug candidates and optimize their structure to maximize their chances of success in clinical trials. The goal is to speed up and reduce the costs of the drug discovery process.

Earlier this year, the companys drug candidate for obsessive-compulsive disorder became one of the first AI-designed drugs to enter clinical trials. While a drug typically takes five years from identification until clinical trials, this one did so in just a year.

Exscientia is partnered with Bayer, BMS, Sanofi, and GSk among others. In the wake of the Covid-19 pandemic, the company set out to go through a database of 15,000 approved and investigational drugs that had already passed safety testing to find candidates that can then be fast-tracked to clinical testing in Covid-19 patients.

Oxford Biomedica was set up in 1995 as a developer and provider of lentiviral vectors for gene and cell therapy. These vectors allow the permanent introduction of a desired DNA sequence into a target cell, be it in the test tube or directly in the patients body.

The technology of Oxford Biomedica is regularly used by companies such as Novartis, Sanofi, Boehringer Ingelheim, Imperial Innovations, and Orchard Therapeutics. Notably, the vectors developed by the company are used in Novartis Kymriah, the first CAR T-cell therapy approved in Europe and the US as a cancer treatment.

Oxford Biomedica also has a preclinical pipeline of proprietary programs in a wide range of applications, including cancer, eye disease, ALS, and liver disease. Last year, the company struck a deal with Microsoft to reduce the complexity and costs of gene and cell therapy manufacturing using artificial intelligence.

Founded in 2016, Arctoris aims to bring the benefits of automation to cancer research. Through the companys services, a researcher could just order an experiment online and spend their valuable time designing experiments and analyzing results rather than performing the repetitive tasks needed to complete them.

Arctoris aims to contribute to reducing the costs of drug discovery, which are increasing every year as treatments become personalized and results more difficult to replicate. In the context of the Covid-19 pandemic, Arctoris has established assays that allow scientists the possibility of running Covid-19 experiments remotely.

Founded in 2015, Orbit Discovery is a drug discovery company focusing on the identification of peptide drugs. The company has developed a technology that significantly improves on conventional methods of drug screening such as phage display or mRNA display.

The technology consists of fusing peptides to the DNA sequence encoding them and presenting them to live cells. This method allows the screening of peptide targets that were previously missed by other technologies, and to study their effect on live cells to better predict their function.

The company has already identified several candidates in the areas of cardiology, immunology, and cancer, and is working with partners such as Zealand Pharma in their preclinical development.

OxStem is a drug discovery company with an unusual approach to stem cell treatments. Instead of using stem cells as a therapy, the firm focuses on developing small molecule drugs that can reprogram the patients own stem cells to treat a wide range of diseases related to aging, including cancer and diabetes as well as neurological, cardiovascular, and ocular conditions.

Founded in 2013, the strategy of OxStem is to spin out companies that specialize in each disease area to focus on the development of the drugs found by the parent company, with five subsidiaries set up so far.

Original post:

The Top 10 Biotech Companies Brewing at... - Labiotech.eu

Read more
CRISPR Market to Witness Exponential Growth by 2020-2027 | Leading Players Thermo Fisher Scientific, Editas Medicine, Caribou Biosciences, CRISPR…

Fort Collins, Colorado The report on the CRISPR Market provides an in-depth assessment of the CRISPR market including technological advancements, market drivers, challenges, current and emerging trends, opportunities, threats, risks, strategic developments, product advancements, and other key features. The report covers market size estimation, share, growth rate, global position, and regional analysis of the market. The report also covers forecast estimations for investments in the CRISPR industry from 2020 to 2027.

The report is furnished with the latest market dynamics and economic scenario in regards to the COVID-19 pandemic. The pandemic has brought about drastic changes in the economy of the world and has affected several key segments and growth opportunities. The report provides an in-depth impact analysis of the pandemic on the market to better understand the latest changes in the market and gain a futuristic outlook on a post-COVID-19 scenario.

Global CRISPR Market Size Study by Application(Genome Editing, Genetic Engineering, Gene Library, CRISPR Plasmid, Human Stem cells, Genetically Modified Organism, Cell Line Engineering), by End-User (Biotechnology Companies, Pharmaceutical Companies, Academic Institutes, Research & Development Institutes) and Regional Forecast 2017-2025.

Get a sample of the report @ https://reportsglobe.com/download-sample/?rid=5977

The report provides an in-depth analysis of the key developments and innovations of the market, such as research and development advancements, product launches, mergers & acquisitions, joint ventures, partnerships, government deals, and collaborations. The report provides a comprehensive overview of the regional growth of each market player.

Additionally, the report provides details about the revenue estimation, financial standings, capacity, import/export, supply and demand ratio, production and consumption trends, CAGR, market share, market growth dynamics, and market segmentation analysis.

The report covers extensive analysis of the key market players in the market, along with their business overview, expansion plans, and strategies. The key players studied in the report include:

Furthermore, the report utilizes advanced analytical tools such as SWOT analysis and Porters Five Forces Analysis to analyze key industry players and their market scope. The report also provides feasibility analysis and investment return analysis. It also provides strategic recommendations to formulate investment strategies and provides insights for new entrants.

Request a discount on the report @ https://reportsglobe.com/ask-for-discount/?rid=5977

The report is designed with an aim to assist the reader in taking beneficial data and making fruitful decisions to accelerate their businesses. The report provides an examination of the economic scenario, along with benefits, limitations, supply, production, demands, and development rate of the market.

By Applications:

By End User:

Request customization of the report @https://reportsglobe.com/need-customization/?rid=5977

Regional Analysis of the Market:

For a better understanding of the global CRISPR market dynamics, a regional analysis of the market across key geographical areas is offered in the report. The market is spread acrossNorth America, Europe, Latin America, Asia-Pacific, and Middle East & Africa.Each region is analyzed on the basis of the market scenario in the major countries of the regions to provide a deeper understanding of the market.

Benefits of the Global CRISPR Report:

To learn more about the report, visit @ https://reportsglobe.com/product/global-crispr-market/

Thank you for reading our report. To learn more about report details or for customization information, please contact us. Our team will ensure that the report is customized according to your requirements.

How Reports Globe is different than other Market Research Providers

The inception of Reports Globe has been backed by providing clients with a holistic view of market conditions and future possibilities/opportunities to reap maximum profits out of their businesses and assist in decision making. Our team of in-house analysts and consultants works tirelessly to understand your needs and suggest the best possible solutions to fulfill your research requirements.

Our team at Reports Globe follows a rigorous process of data validation, which allows us to publish reports from publishers with minimum or no deviations. Reports Globe collects, segregates, and publishes more than 500 reports annually that cater to products and services across numerous domains.

Contact us:

Mr. Mark Willams

Account Manager

US: +1-970-672-0390

Email:[emailprotected]

Web:reportsglobe.com

More here:

CRISPR Market to Witness Exponential Growth by 2020-2027 | Leading Players Thermo Fisher Scientific, Editas Medicine, Caribou Biosciences, CRISPR...

Read more
Frequency Therapeutics Presents Results Demonstrating Sustained Improvement in Hearing Loss Patients Treated with FX-322 – Business Wire

WOBURN, Mass.--(BUSINESS WIRE)--Frequency Therapeutics, Inc. (Nasdaq: FREQ), a clinical-stage biotechnology company focused on harnessing the bodys innate biology to repair or reverse damage caused by a broad range of degenerative diseases, today presented clinical results from a longer-term durability study of FX-322, showing that some patients with chronic sensorineural hearing loss had significant improvement in key measures of hearing that were sustained for up to 21 months.

These new data build upon Phase 1/2 study results previously detailed at the 2019 AAO-HNS conference that showed, for the first time, statistically significant improvements in word recognition (WR) scores in patients with chronic moderate to moderately severe SNHL. These patients had received a single intratympanic dose of FX-322 in a double-blind, placebo-controlled study, and had been evaluated for 90 days. Subsequent testing of a subset of these patients between 13 and 21 months after initial dosing, showed sustained improvements in measures of speech intelligibility (clarity), and in some patients, increased audibility (volume) threshold values at a higher frequency. Susan King, M.D., FACS, the lead investigator on both studies, detailed results today at the AAO-HNSF 2020 Virtual Annual Meeting & OTO Experience.

Historically, patients with acquired chronic SNHL do not regain their lost hearing. The FX-322 Phase 1/2 study has provided promising evidence of clinically meaningful improvements in word recognition, and based on the recent longer-term follow-up data, we believe that this benefit may be sustained for many months following a single dose of this investigational treatment, said Dr. King, co-founder of the Ear Medical Group in San Antonio and Clinical Professor, Department of Otolaryngology, Head and Neck Surgery, The University of Texas Health Science Center at San Antonio. It is exciting to see sustained clinical benefits in these individuals, and while still early, also to see the potential for a therapeutic that may provide sustained speech intelligibility improvement, which remains an unmet need for hearing loss patients.

Four of the patients that were observed to have statistically significant WR scores during the Phase 1/2 study had maintained those improvements in the follow up assessment. Three of these patients remained at statistically significant levels, maintaining an average increase of 87 percent in WR scores from their original baseline levels. The other patient maintained a 71 percent increase from their initial baseline, though that sustained improvement fell outside the range of statistical significance. An additional patient who did not achieve statistically significant change in WR during the Phase 1/2 study was also retested, and it was observed that their WR score had returned to baseline.

Moreover, three of the patients that maintained statistically significant WR scores also showed 10-15dB improvements at 8000Hz compared to their original threshold values at this frequency. The safety profile observed in the FX-322 Phase 1/2 study was favorable and no additional safety findings were observed in the follow-up period. Together, these longer-term clinical data demonstrate the potential for FX-322 to have a durable positive impact both on measures of hearing clarity and volume.

Todays announcement is another important building block as we further our understanding of FX-322s drug potential and the patient populations we hope to treat. In addition to a favorable safety profile, we have generated compelling cochlear drug delivery data, and these newly presented results show that the FX-322 benefit to hearing loss may provide individuals with a long-lasting clinical benefit, said David L. Lucchino, Frequencys chief executive officer. Furthermore, we believe this provides additional evidence supporting the regenerative mechanism of our novel therapeutic approach and a potentially disease modifying treatment. We look forward to sharing data from our ongoing Phase 2a study and to a better understanding of the impact of FX-322 on sound clarity and word recognition that is so critical to hearing health and overall health.

About FX-322 and Sensorineural Hearing Loss

FX-322 is Frequencys lead product candidate for the treatment of acquired SNHL. SNHL impacts more than 40 million people in the U.S. and hundreds of millions of people globally and is the primary cause of more than 90 percent of all hearing loss. Acquired SNHL typically results from damage to the hair cells of the inner ear into signals that are sent to the brain. These auditory sensory hair cells may be lost due to chronic noise exposure, aging, certain viral infections or exposure to drugs that are toxic to the ear. FX-322 is designed to activate progenitor cells (pre-programmed stem cells) and regenerate auditory hair cells in the inner ear (cochlea) to restore hearing function.

FX-322 is currently being evaluated in a Phase 2a study. The FX-322 Phase 2a study is a randomized, double blind, placebo-controlled, single- and repeat-dose study in which the Company plans to enroll up to 96 patients aged 18 to 65 with SNHL. The objectives of the Phase 2a study are to further establish the hearing signal observed in the completed Phase 1/2 study, evaluate the impact of multiple doses and provide deeper insights on endpoints and the appropriate patient population for future studies. FX-322 Phase 2a study subjects are randomized to receive either FX-322 or placebo in one ear, with the untreated ear acting as an additional measure of control. The study is using validated measures of hearing function including word recognition (WR), words-in-noise and pure tone audiometry. Tinnitus and quality-of-life measures will also be evaluated using the Tinnitus Functional Index and the Hearing Handicap Inventory for Adults, respectively. The Phase 2a study has four dose cohorts, and hearing function will be regularly tested over the course of seven months following the first dosing.

The FX-322 Phase 2a study remains ongoing and the Company is expected to report study data in the second quarter of 2021.

About Frequency Therapeutics

Frequency Therapeutics is a leader in the development of medicines designed to activate progenitor cells within the body to treat degenerative diseases. The Companys progenitor cell activation (PCA) approach stimulates progenitor cells to create functional tissue with the aim of developing disease modifying therapies. The Companys lead product candidate, FX-322, is designed to regenerate auditory hair cells to restore hearing function. In a FX-322 Phase 1/2 study, statistically significant and clinically meaningful improvements in key measures of hearing function in patients with sensorineural hearing loss were observed. FX-322 is being evaluated in an ongoing Phase 2a clinical study in patients with sensorineural hearing loss. The Company also is evaluating additional diseases where its PCA approach could create functional tissue, including a discovery program in multiple sclerosis.

Headquartered in Woburn, Mass., Frequency has a license and collaboration agreement with Astellas Pharma Inc. for FX-322, for which it retains U.S. rights, as well as additional collaboration and licensing agreements with academic and nonprofit research organizations including The Scripps Research Institute, Massachusetts Eye and Ear, Mass General Brigham and the Massachusetts Institute of Technology. For more information, visit http://www.frequencytx.com and follow Frequency on Twitter @Frequencytx.

Forward-Looking Statements

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this press release that do not relate to matters of historical fact should be considered forward-looking statements, including without limitation statements regarding the Phase 2a clinical trial, pace and timing of enrollment for the Phase 2a clinical trial, the timing of top-line data from the Phase 2a clinical trial, the results and implications of the Phase 1/2 durability of response data, the ability of our technology platform to provide patient benefit, the impact of COVID-19 on the Companys on-going and planned clinical trials and business, increases in headcount, future milestone and royalty payments under the license and collaboration agreement with Astellas, estimates of the size of the hearing loss population and population at risk for hearing loss, the Companys ability to advance its hearing program and further diversify its portfolio and the potential application of the PCA platform to other diseases.

These forward-looking statements are based on managements current expectations. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including, but not limited to, the following: the impact of COVID-19 on the Companys ongoing and planned clinical trials, research and development and manufacturing activities, the relocation of the Companys offices and laboratory facilities, the Companys business and financial markets; the Company has incurred and will continue to incur significant losses and is not and may never be profitable; the Companys need for additional funding to complete development and commercialization of any product candidate; the Companys dependence on the development of FX-322; the unproven approach of the PCA platform; the lengthy, expensive and uncertain process of clinical drug development and regulatory approval; limited experience successfully obtaining marketing approval for and commercializing product candidates; the results of earlier clinical trials not being indicative of the results from later clinical trials; differences between preliminary or interim data and final data; adverse events or undesirable side effects; disruptions at the FDA and other regulatory agencies; failure to identify additional product candidates; new or changed legislation; failure to maintain Fast Track designation for FX-322 and such designation failing to result in faster development or regulatory review or approval; costly and damaging litigation, including related to product liability or intellectual property or brought by stockholders; dependence on Astellas Pharma Inc. for the development and commercialization of FX-322 outside of the United States; misconduct by employees or independent contractors; reliance on third parties, including to conduct clinical trials and manufacture product candidates; compliance with laws and regulations, including healthcare and environmental, health, and safety laws and regulations; failure to obtain, maintain and enforce protection of patents and other intellectual property; security breaches or failure to protect private personal information; attracting and retaining key personnel; and ability to manage growth.

These and other important factors discussed under the caption Risk factors in the Companys Form 10-Q filed with the Securities and Exchange Commission (SEC) on August 12, 2020 and its other reports filed with the SEC could cause actual results to differ materially from those indicated by the forward-looking statements made in this press release. Any such forward-looking statements represent managements estimates as of the date of this press release. While the Company may elect to update such forward-looking statements at some point in the future, it disclaims any obligation to do so, even if subsequent events cause its views to change. These forward-looking statements should not be relied upon as representing the Companys views as of any date subsequent to the date of this press release.

More here:

Frequency Therapeutics Presents Results Demonstrating Sustained Improvement in Hearing Loss Patients Treated with FX-322 - Business Wire

Read more